生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 221-229.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0502
田栩瑞1(), 霍信屹1, 郭云涵1, 向林1,2, 产祝龙1,2(
), 王艳平1,2(
)
收稿日期:
2024-05-22
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
产祝龙,男,博士,教授,研究方向:园林植物逆境生物学;E-mail: zlchan@mail.hzau.edu.cn;作者简介:
田栩瑞,女,硕士研究生,研究方向:园林植物与观赏园艺;E-mail: mux@webmail.hzau.edu.cn
基金资助:
TIAN Xu-rui1(), HUO Xin-yi1, GUO Yun-han1, XIANG Lin1,2, CHAN Zhu-long1,2(
), WANG Yan-ping1,2(
)
Received:
2024-05-22
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】对百合LoSAUR10基因进行克隆和组织表达特异性分析,在拟南芥中对其功能进行探究,为百合鳞茎发育机理提供参考依据。【方法】利用外源处理比较生长素对百合鳞片扦插籽球发生的影响,在此基础上以‘西伯利亚’百合cDNA为模板克隆 LoSAUR10,并对其进行生物信息学分析,利用实时荧光定量PCR和过表达转基因拟南芥植株对LoSAUR10 基因的表达特征及其在叶片发育中的功能进行分析。【结果】生长素IAA处理能显著促进百合鳞片扦插过程中的籽球发生和膨大,0.05 g/L的生长素处理后百合籽球发生率较对照组增加了69.04%。在扦插产生的籽球发生早期,LoSAUR10 基因的表达受外源生长素诱导,在籽球进入膨大阶段时,LoSAUR10 基因的表达逐渐下降。测序结果表明,LoSAUR10基因编码区长297 bp,无内含子,编码98个氨基酸,含有Auxin-inducible结构域。进化树分析结果表明LoSAUR10蛋白序列与郁金香中TgSAUR10及模式植物拟南芥中AtSAUR9和AtSAUR10具有较高的序列相似性。荧光定量PCR结果表明,LoSAUR10基因在转录水平受生长素诱导,且在多个组织中均有表达,但在百合鳞片中表达量较高。与野生型植株相比,过表达LoSAUR10的转基因拟南芥植株表现出莲座叶增大,叶片数量增加,叶片表皮细胞面积增大,且抽薹时间提前的表型。【结论】百合LoSAUR10基因参与调控植物的叶片发育和开花过程,研究结果为揭示百合籽球发生机理奠定了基础。
田栩瑞, 霍信屹, 郭云涵, 向林, 产祝龙, 王艳平. 百合LoSAUR10基因的表达特征及功能分析[J]. 生物技术通报, 2025, 41(1): 221-229.
TIAN Xu-rui, HUO Xin-yi, GUO Yun-han, XIANG Lin, CHAN Zhu-long, WANG Yan-ping. Expression and Functional Analysis of Gene LoSAUR10 from Lilium Oriental Hybrids[J]. Biotechnology Bulletin, 2025, 41(1): 221-229.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
LoSAUR10-cloning-F | CTCCGTCTACTTCATTCTTTC |
LoSAUR10-cloning-R | GTATCAGTGGTGGGTCTTCT |
pCAMBIA1307-LoSAUR10-F | ACCGTCGACGAGCTCTCTAGAATGGCAGCAAGGAGGTTGAA |
pCAMBIA1307-LoSAUR10-R | TTTGCGGAGTACCCGGGTACCGCAGAGACTGGAGGTGAGAGATCG |
qRT-LoActin-F | TGCTGACCGTATGAGCAAGG |
qRT-LoActin-R | GACGATGGCTGGACCAGATT |
qRT-LoSAUR10-F | CATCGTCCCCATCTCTCTACTTG |
qRT-LoSAUR10-R | AGGTGAGAGATCGGAAGACAGTA |
qRT-AtActin-F | TGAGAGATTCAGATGCCCAGA |
qRT-AtActin-R | TGGATTCCAGCAGCTTCCAT |
qRT-At-LoSAUR10-F | GCTTCATCGTCCCCATCTC |
qRT-At-LoSAUR10-R | GAAGACAGTATCCTCGCATGG |
表1 引物信息
Table 1 Information of primers
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
LoSAUR10-cloning-F | CTCCGTCTACTTCATTCTTTC |
LoSAUR10-cloning-R | GTATCAGTGGTGGGTCTTCT |
pCAMBIA1307-LoSAUR10-F | ACCGTCGACGAGCTCTCTAGAATGGCAGCAAGGAGGTTGAA |
pCAMBIA1307-LoSAUR10-R | TTTGCGGAGTACCCGGGTACCGCAGAGACTGGAGGTGAGAGATCG |
qRT-LoActin-F | TGCTGACCGTATGAGCAAGG |
qRT-LoActin-R | GACGATGGCTGGACCAGATT |
qRT-LoSAUR10-F | CATCGTCCCCATCTCTCTACTTG |
qRT-LoSAUR10-R | AGGTGAGAGATCGGAAGACAGTA |
qRT-AtActin-F | TGAGAGATTCAGATGCCCAGA |
qRT-AtActin-R | TGGATTCCAGCAGCTTCCAT |
qRT-At-LoSAUR10-F | GCTTCATCGTCCCCATCTC |
qRT-At-LoSAUR10-R | GAAGACAGTATCCTCGCATGG |
图1 生长素处理对百合扦插籽球发育的影响 A:IAA处理促进百合鳞片扦插籽球膨大;bar=0.5 cm;B:IAA处理促进籽球繁殖率;C:不同周径籽球占比分析;* P<0.05,*** P<0.001,下同
Fig. 1 Effects of auxin application on the development of lily bulblets A: IAA treatment enhanced bulblets enlargement in lily; bar=0.5 cm. B: Reproduction rates were induced by IAA treatment. C: Comparison of the proportion of bulblets. * P<0.05, *** P<0.001. The same below
图2 IAA处理对百合籽球发生和LoSAUR10基因表达的影响 A:IAA处理不同时间百合籽球发生比较;bar=0.5 cm;B:IAA处理不同时间LoSAUR10基因的表达分析
Fig. 2 Effects of IAA treatment on the bulblets occurrence and relative expressions of LoSAUR10 in lily A: Comparison of the bulblets at different time courses after IAA treatment; bar=0.5 cm. B: Relative expressions of LoSAUR1 gene after IAA treatment
图3 IAA处理不同时间(A)及不同组织(B)LoSAUR10基因表达水平分析 不同字母表示P<0.05
Fig. 3 Relative expressions of LoSAUR10 in different treatment time (A) and different tissues with (B) IAA treatment Different letters indicate P<0.05
图4 百合LoSAUR10蛋白序列和进化树分析 A:LoSAUR10蛋白保守序列比对;红色框为SAUR结构域;B:LoSAUR10与拟南芥AtSAURs、郁金香TgSAUR10蛋白序列进化树分析
Fig. 4 Protein sequence and phylogenetic tree construction of LoSAUR10 in lily A: Alignment of conserved sequence of LoSAUR10 protein; the red box indicates SAUR domain. B: Phylogenetic tree of LoSAUR10 and other homologous proteins from Arabidopsis thaliana and Tulipa gesneriana
图5 LoSAUR10蛋白生物信息学分析 A:LoSAUR10跨膜结构域分析;B:LoSAUR10蛋白亲水性分析;C:LoSAUR10的结构域分析;D:LoSAUR10的蛋白二级结构域分析
Fig. 5 Bioinformatics analysis of LoSAUR10 protein A: Transmembrane domain analysis of LoSAUR10. B: Hydrophilicity analysis of LoSAUR10 protein. C: Conserved domain analysis of LoSAUR10. D: Secondary structure of LoSAUR10 protein
图6 LoSAUR10过表达转基因植株表型分析 A:生长3周的植物叶片大小比较,bar=1.0 cm;B:荧光定量PCR分析LoSAUR10基因的表达量;M:marker;WT:野生型;P:质粒;C:第6-7片莲座叶片长度比较;D:第6-7片莲座叶宽度比较;E:叶片表皮细胞大小比较;F:莲座叶数量比较;G:植株株幅比较;H:抽薹天数比较
Fig. 6 Phenotype analysis of transgenic plants with over-expressed LoSAUR10 gene A: Comparison of leaves sizes after 3 weeks growing; bar=1.0 cm. B: Relative expression of LoSAUR10 analyzed by RT-qPCR; M: marker; WT: wild-type; P: plasmid. C: Length comparison of the 6th-7th rosette leaves. D: Width comparison of the 6th-7th rosette leaves. E: Area comparison of epidermal cells. F: Comparison of numbers of rosette leaves.G: Plant width comparison. H: Bolting time comparison
[1] | 李锡香, 明军. 百合种质资源描述规范和数据标准[M]. 北京: 中国农业科学技术出版社, 2014. |
Li XX, Ming J. Descriptors and data standard for lily(Lilium spp.)[M]. Beijing: China Agricultural Science and Technology Press, 2014. | |
[2] | 李玉帆, 明军, 王良桂, 等. 百合基本营养成分和活性物质研究进展[J]. 中国蔬菜, 2012(24): 7-13. |
Li YF, Ming J, Wang LG, et al. Research progress on basic nutritional and bioactive substances of lily[J]. China Veg, 2012(24): 7-13. | |
[3] | Li WT, Huang DJ, Wang B, et al. Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb[J]. PLoS One, 2022, 17(1): e0262506. |
[4] | Rees AR. The growth of bulbs: Applied aspects of the physiology of ornamental bulbous crop plant[M]. London: Springer on behalf of New York Botanical Garden Press, 2012. |
[5] |
Lazare S, Bechar D, Fernie AR, et al. The proof is in the bulb: glycerol influences key stages of lily development[J]. Plant J, 2019, 97(2): 321-340.
doi: 10.1111/tpj.14122 |
[6] | Lazare S, Zaccai M. Flowering pathway is regulated by bulb size in Lilium longiflorum(Easter lily)[J]. Plant Biol, 2016, 18(4): 577-584. |
[7] | Liang JH, Chen YZ, Hou JQ, et al. Cytokinins influence bulblet formation by modulating sugar metabolism and endogenous hormones in Asiatic hybrid lily[J]. Ornam Plant Res, 2023, 3(1). |
[8] | Cancé C, Martin-Arevalillo R, Boubekeur K, et al. Auxin response factors are keys to the many auxin doors[J]. New Phytol, 2022, 235(2): 402-419. |
[9] | Natalia M. Mechanisms of vegetative propagation in bulbs: a molecular approach[D]. Wageningen University & Research, 2017. |
[10] | Wu J, Liu SY, He YJ, et al. Genome-wide analysis of SAUR gene family in Solanaceae species[J]. Gene, 2012, 509(1): 38-50. |
[11] |
McClure BA, Guilfoyle T. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs[J]. Plant Mol Biol, 1987, 9(6): 611-623.
doi: 10.1007/BF00020537 pmid: 24277197 |
[12] |
Stortenbeker N, Bemer M. The SAUR gene family: the plant's toolbox for adaptation of growth and development[J]. J Exp Bot, 2019, 70(1): 17-27.
doi: 10.1093/jxb/ery332 pmid: 30239806 |
[13] | Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors[J]. Plant Mol Biol, 2002, 49(3/4): 373-385. |
[14] | Chen YZ, Hao X, Cao J. Small auxin upregulated RNA(SAUR)gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum[J]. J Integr Plant Biol, 2014, 56(2): 133-150. |
[15] | Li Q, Wang J, Yin ZN, et al. SlPP2C2 interacts with FZY/SAUR and regulates tomato development via signaling crosstalk of ABA and auxin[J]. Plant J, 2024, 119(2): 1073-1090. |
[16] |
Wang W, Zheng YW, Qiu L, et al. Genome-wide identification of the SAUR gene family and screening for SmSAURs involved in root development in Salvia miltiorrhiza[J]. Plant Cell Rep, 2024, 43(7): 165.
doi: 10.1007/s00299-024-03260-5 pmid: 38861173 |
[17] | Spartz AK, Lee SH, Wenger JP, et al. The SAUR19 subfamily of small auxin up RNA genes promote cell expansion[J]. Plant J, 2012, 70(6): 978-990. |
[18] |
Zhang H, Yu ZJ, Yao XD, et al. Genome-wide identification and characterization of small auxin-up RNA(SAUR)gene family in plants: evolution and expression profiles during normal growth and stress response[J]. BMC Plant Biol, 2021, 21(1): 4.
doi: 10.1186/s12870-020-02781-x pmid: 33407147 |
[19] |
Ren H, Gray WM. SAUR proteins as effectors of hormonal and environmental signals in plant growth[J]. Mol Plant, 2015, 8(8): 1153-1164.
doi: 10.1016/j.molp.2015.05.003 pmid: 25983207 |
[20] | Leeggangers HACF, Moreno-Pachon N, Gude H, et al. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants[J]. Int J Dev Biol, 2013, 57(6/7/8): 611-620. |
[21] |
Li YH, Han S, Qi YH. Advances in structure and function of auxin response factor in plants[J]. J Integr Plant Biol, 2023, 65(3): 617-632.
doi: 10.1111/jipb.13392 |
[22] |
Atamian HS, Creux NM, Brown RI, et al. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits[J]. Science, 2016, 353(6299): 587-590.
doi: 10.1126/science.aaf9793 pmid: 27493185 |
[23] | Chae K, Isaacs CG, Reeves PH, et al. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation[J]. Plant J, 2012, 71(4): 684-697. |
[24] | Park JE, Kim YS, Yoon HK, et al. Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis[J]. Plant Sci, 2007, 172(1): 150-157. |
[25] | Sun N, Wang JJ, Gao ZX, et al. Arabidopsis SAURs are critical for differential light regulation of the development of various organs[J]. Proc Natl Acad Sci U S A, 2016, 113(21): 6071-6076. |
[26] | 夏丽莎, 高华霞, 罗睿, 等. 生长素参与淡黄花百合珠芽发育调节[J]. 分子植物育种, 2020, 18(5): 1409-1418. |
Xia LS, Gao HX, Luo R, et al. Auxin involved in bulbil development of Lilium sulphureum[J]. Mol Plant Breed, 2020, 18(5): 1409-1418. | |
[27] | Mazor I, Weingarten-Kenan E, Zaccai M. The developmental stage of the shoot apical meristem affects the response of Lilium candidum bulbs to low temperature[J]. Sci Hortic, 2021, 276: 109766. |
[28] |
Leeggangers HACF, Rosilio-Brami T, Bigas-Nadal J, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control[J]. Plant Cell Physiol, 2018, 59(1): 90-106.
doi: 10.1093/pcp/pcx164 pmid: 29088399 |
[1] | 许雪飞, 杨盼盼, 张文亮, 边光亚, 徐雷锋, 刘会超, 明军. 百合斑驳病毒在卷丹顶端分生组织中的分布[J]. 生物技术通报, 2024, 40(8): 212-220. |
[2] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[3] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[4] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[5] | 杨飞芸, 白洁, 刘坤, 王瑞刚. CiCHI提高拟南芥总黄酮含量[J]. 生物技术通报, 2019, 35(11): 39-45. |
[6] | 杜文凯, 袁素霞, 胡凤荣. 一种快速检测岷江百合总RNA样本中基因组DNA残留的方法[J]. 生物技术通报, 2018, 34(10): 81-86. |
[7] | 汪小飞,周志光,王玉义. 野生花卉大百合属植物繁殖技术研究进展[J]. 生物技术通报, 2014, 30(9): 22-27. |
[8] | 张焕, 郑佳, 阚丹丹, 樊金萍. 农杆菌介导亚洲百合转化体系的建立及转GsZFP1基因研究[J]. 生物技术通报, 2014, 0(2): 91-96. |
[9] | 柳忠玉, 赵树进. 转PcRS基因拟南芥的抗炭疽病研究[J]. 生物技术通报, 2014, 30(10): 107-112. |
[10] | 单曙光;于国红;徐娜;程宪国;. 大豆转录因子GmC2H2基因转化拟南芥效果分析[J]. , 2011, 0(12): 75-81. |
[11] | 陈名红;熊华斌;李成云;. 分子标记在百合属植物遗传多样性研究中的应用[J]. , 2011, 0(12): 65-69. |
[12] | 王晓飞;程宪国;王迎波;吴庆钰;白由路;梁永超;. Floral-dip法大豆GmDREB转录因子转拟南芥研究[J]. , 2008, 0(05): 103-107. |
[13] | 汪开治. 美证实花青苷蛋白可协助植物完成受精作用[J]. , 2005, 0(05): 6-6. |
[14] | 尹丽蓉;谢丙炎;肖启明;杨宇红;葛红. 百合转基因研究进展[J]. , 2005, 0(05): 16-19. |
[15] | 李思义. 利用PCR法同时鉴定2种郁金香病毒技术[J]. , 2002, 0(01): 25-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||