生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 25-38.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0522

• 综述与专论 • 上一篇    下一篇

微藻油脂合成及高脂藻株培育研究进展

邹涛圳1(), 李鹏飞1(), 李新冬1, 万欢2, 张燚3   

  1. 1.江西理工大学土木与测绘工程学院,赣州 341000
    2.江西理工大学法学院,赣州 341000
    3.中国市政工程中南设计研究总院有限公司,武汉 430010
  • 收稿日期:2024-05-31 出版日期:2025-01-26 发布日期:2025-01-22
  • 通讯作者: 李鹏飞,男,博士,讲师,研究方向:微藻生物质能源及藻类资源化;E-mail: lpffighter@163.com
  • 作者简介:邹涛圳,男,硕士研究生,研究方向:微藻诱变产油;E-mail: gdztz8823@163.com
  • 基金资助:
    江西省教育厅基金项目(GJJ210832);江西理工大学高层次人才科研启动项目(205200100677);江西省自然科学基金项目(20242BAB20251)

Research Progress in Microalgal Lipid Synthesis and Cultivation of High-lipid Strain

ZOU Tao-zhen1(), LI Peng-fei1(), LI Xin-dong1, WAN Huan2, ZHANG Yi3   

  1. 1. Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
    2. Law School, Jiangxi University of Science and Technology, Ganzhou 341000
    3. Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010
  • Received:2024-05-31 Published:2025-01-26 Online:2025-01-22

摘要:

微藻油脂作为一种潜在的可再生能源和生物燃料资源,在解决能源危机及促进绿色发展方面具有重要意义。藻种特性影响微藻培育、油脂提取和转化等多个环节,选择适宜的原始藻株进行定向育种,有望突破生产过程中总体油脂产率偏低的瓶颈。胁迫培养通过改变微藻的外部生长条件来引起其内部生理和代谢变化,从而促进油脂的积累,本质上是利用微藻自身的应激性反应,需要在油脂积累和生长平衡之间找到最佳点。诱变技术通过物理或化学手段引起微藻细胞损伤,本质上是一种外应力作用下的随机突变,需要从中筛选出具有优良性状的突变株。基因工程育种通过分子生物学手段,定向改造微藻的基因组,具备高精度、高成本和高复杂性。探索高脂藻株培养与资源化理念的结合,可以实现更经济环保的生物质能原料微藻生产模式,推动生物质能产业发展。论文概述了微藻油脂合成的机理及其调控策略,总结了促微藻产油的培育方法,包括胁迫、诱变、基因工程及高脂藻株与资源化生产的联动,强调培育高脂藻株对于实现可持续生物燃料生产的重要作用。通过列举各培育手段在当前微藻油脂高产研究的技术重点和作用机理,说明了当前微藻产油的研究方向和瓶颈,未来的研究可能致力于产油微藻油脂代谢调控网络的发掘完善、高通量育种方法的创新及资源化培养体系的优化。

关键词: 微藻油脂, 藻株培育, 生物质能源, 胁迫培养, 诱变技术, 基因工程育种, 资源化培养

Abstract:

Microalgal lipids, as a potential renewable energy source and biofuel resource, hold significant importance in addressing the energy crisis and promoting green development. The characteristics of algal strains affect various stages of microalgal cultivation, lipid extraction and conversion. Selecting suitable original strains for high-lipid breeding is expected to overcome the bottleneck of low overall lipid yield in the production process. Stress cultivation induces physiological and metabolic changes in microalgae by altering external growth conditions, thereby promoting lipid accumulation. This essentially utilizes the stress response of microalgae, requiring an optimal balance between lipid accumulation and growth. Mutagenesis induces random mutations in microalgae cells through physical or chemical means, essentially acting as external stress-induced random mutations, necessitating the selection of mutants with desirable traits. Genetic engineering breeding involves the precise modification of the microalgal genome through molecular biological techniques, characterized by high precision, high cost, and high complexity. Exploring the integration of high-lipid strain cultivation with resource-efficient concepts can achieve a more economical and environmentally-friendly model biomass energy production, driving the development of the biomass energy industry. This paper provides an overview of the mechanisms of microalgal lipid synthesis and its regulatory strategies, summarizes the methods for promoting lipid production in microalgae, including stress induction, mutagenesis, and genetic engineering, as well as the synergy between high-lipid strains and resource-efficient production. The paper emphasizes the importance of cultivating high-lipid strains for sustainable biofuel production. By enumerating the key technologies and mechanisms of various cultivation methods in current high-yield microalgal lipid research, the paper highlights the research directions and bottlenecks in microalgal lipid production. Future research may focus on the exploration and improvement of the lipid metabolism regulatory network in oil-producing microalgae, the innovation of high-throughput breeding methods, and the optimization of resource-efficient cultivation systems.

Key words: microalgal lipids, algal strain cultivation, biomass energy, stress cultivation, mutagenesis, breeding by genetic engineering, resource-efficient cultivation