生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 198-209.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0596
李云宾1(), 黎玉萍1, 成钦1, 林春1,2, 毛自朝1,2, 刘正杰1,2(
)
收稿日期:
2024-06-21
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
刘正杰,男,博士,副教授,研究方向:植物功能基因组学;E-mail: 2013045@ynau.edu.cn作者简介:
李云宾,男,博士研究生,研究方向:基因挖掘与功能;E-mail: 2652576980@qq.com
基金资助:
LI Yun-bin1(), LI Yu-ping1, CHENG Qin1, LIN Chun1,2, MAO Zi-chao1,2, LIU Zheng-jie1,2(
)
Received:
2024-06-21
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】对芦笋全基因组DUF247家族进行鉴定与分析,为该基因家族特别是AoSOFF的性别决定的分子功能研究奠定基础。【方法】利用生物信息学方法对芦笋中的DUF247基因家族成员进行鉴定,开展其各成员编码蛋白理化性质、聚类、蛋白保守结构域、启动子中顺式作用元件及表达模式分析;利用实时定量PCR(RT-qPCR)和组织原位杂交技术验证芦笋性别决定基因AoSOFF的表达模式。【结果】芦笋中鉴定出24个DUF247基因家族成员,它们不均匀地分布在7条染色体上,且在不同器官中呈现差异表达。该家族成员编码蛋白的理化性质如氨基酸组成、分子量、理论等电点、不稳定系数和脂肪族系数等都存在差异。RT-qPCR和组织原位杂交结果表明,DUF247基因家族成员之一AoSOFF在芦笋雄花无性别分化早期的雌蕊、雄蕊以及花冠中均有较高表达,但在性别分化早期开始降低表达;在两性花中的表达量较低;而在雌性芦笋各组织中表达极低或检测不到,说明AoSOFF在雄性芦笋中特异性表达,与芦笋性别决定中的雌性抑制功能密切相关。【结论】芦笋DUF247家族成员具有明显的保守性,在芦笋不同性别的不同组织中的表达模式存在显著差异,特别是AoSOFF是一个雄性专一性基因,其同源基因参与植物的自交亲和调控,预示其以自交不亲和类似的反应导致雌性发育的抑制。
李云宾, 黎玉萍, 成钦, 林春, 毛自朝, 刘正杰. 芦笋DUF247基因家族成员鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 198-209.
LI Yun-bin, LI Yu-ping, CHENG Qin, LIN Chun, MAO Zi-chao, LIU Zheng-jie. Identification and Expression Analysis of the Members of the Asparagus officinalis DUF247 Gene Family[J]. Biotechnology Bulletin, 2025, 41(1): 198-209.
图1 芦笋、文竹、大理天门冬和拟南芥DUF247蛋白系统进化树 V1:芦笋;OF:文竹;Ata:大理天门冬;AT:拟南芥
Fig. 1 Phylogenetic tree of DUF247 protein from A. officinalis, A. setaceus, A. taliensis and A. thaliana V1: A. officinalis; OF: A. setaceus; Ata: A. taliensis; AT: A. thaliana
图2 芦笋DUF247家族启动子顺式作用元件(A)及编码蛋白保守基序图(B)
Fig. 2 Cis-acting elements (A) and conserved motifs map (B) of encoded proteins of DUF247 family genes in A. officinalis
图4 芦笋DUF247家族基因成员不同性别和不同组织器官的表达量热图 MR:雄根;MS:雄茎;MF:雄花;FR:雌根;FS:雌茎;FF:雌花;HR:两性根;HS:两性茎;HF:两性花;R1、R2和R3表示为样品的3个重复;下同
Fig. 4 Heatmaps of expressions of gene members of A. officialis DUF247 family in different genders and tissues or organs MR: Male root; MS: male stem; MF: male flower; FR: female root; FS: female stem; FF: female flower; HR: hermaphrodite root; HS: hermaphrodite stem; HF: hermaphrodite flower; R1, R2, and R3 indicate the three replicates of the sample. The same below
图5 V1_01.231, V1_05.1843和V1_05.2202在不同性别的早期花蕾的表达量 ffs:雌花的雄蕊;mfs:雄花的雄蕊;fft:雌花的心皮;mft:雄花的心皮;ffp:雌花的雌蕊;mfp:雄花的雌蕊。不同小写字母代表差异显著(P<0.05),下同
Fig. 5 Different expressions of V1_01.231, V1_05.1843, and V1_05.2202 in early development buds of different genders ffs: Female flower'stamen; mfs: male flower'stamen; fft: female flower'tapal; mft: male flower'tapal; ffp: female flower'pistil; mfp: male flower'pistil. Different lowercase letters indicatet significant differences(P<0.05), the same below
图6 芦笋AoSOFF基因编码蛋白质一级结构比较及其三维结构预测 A:AoSOFF-M蛋白的三维结构;B:AoSOFF-F蛋白的三维结构;C:AoSOFF-H蛋白的三维结构;D:3个蛋白在一级结构上的比较,M为雄株,F为雌株,H为两性株
Fig. 6 Primary structure comparison and 3D structure prediction of protein encoded by AoSOFF gene in A. officinalis A: 3D structure of AoSOFF-M protein; B: 3D structure of AoSOFF-F protein; C: 3D structure of AoSOFF-H protein; D: comparison of three proteins in primary structure, M for male, F for female, and H for hermaphroditic
图8 芦笋AoSOFF在雄花、雌花和两性花中的原位杂交检测 A-C:雄花原位杂交结果;D-F:雄花对照;G-I:两性花原位杂交结果;J-L:两性花对照;M-O:雌花原位杂交结果;P-R:雌花对照。I,I,III:花发育的3个时期。白色箭头:胚珠;蓝色箭头:子房;红色箭头:柱头;黄色箭头:花粉囊外壁;Bar=500 μm
Fig. 8 Detection of A. officinalis AoSOFF in male, female and hermaphroditic flowers by in situ hybridization A-C: Male flower; D-F: male flower control; G-I: hermaphroditic flower; J-L: hermaphroditic flower control; M-O: female flower in situ hybridization results; P-R: female flower control. I, II, and III: Three stages of flower development. White arrow: Ovule; blue arrow: ovary; red arrows: stigma; yellow arrow: outer wall of pollen sac. Bar=500 μm
[1] | Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Res, 2021, 49(D1): D412-D419. |
[2] | Temple H, Mortimer JC, Tryfona T, et al. Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis[J]. Plant Direct, 2019, 3(2): e00117. |
[3] | Li XJ, Sun LJ, Tan LB, et al. TH1, a DUF640 domain-like gene controls lemma and palea development in rice[J]. Plant Mol Biol, 2012, 78(4/5): 351-359. |
[4] | Yan DW, Zhou Y, Ye SH, et al. BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice[J]. Sci China Life Sci, 2013, 56(3): 275-283. |
[5] |
罗璇, 林正雨, 陈章, 等. 玉米DUF1685基因家族的鉴定和进化分析[J]. 热带作物学报, 2022, 43(12): 2431-2442.
doi: 10.3969/j.issn.1000-2561.2022.12.005 |
Luo X, Lin ZY, Chen Z, et al. Identification and evolutionary analysis of maize DUF1685 gene family[J]. Chin J Trop Crops, 2022, 43(12): 2431-2442. | |
[6] |
Shinozuka H, Cogan NOI, Smith KF, et al. Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass(Lolium perenne L.)[J]. Plant Mol Biol, 2010, 72(3): 343-355.
doi: 10.1007/s11103-009-9574-y pmid: 19943086 |
[7] | Zhang XJ, Jia Y, Liu Y, et al. Challenges and perspectives in the study of self-incompatibility in orchids[J]. Int J Mol Sci, 2021, 22(23): 12901. |
[8] |
Liang M, Cao ZH, Zhu AD, et al. Evolution of self-compatibility by a mutant Sm-RNase in citrus[J]. Nat Plants, 2020, 6(2): 131-142.
doi: 10.1038/s41477-020-0597-3 pmid: 32055045 |
[9] | Ma L, Zhang CZ, Zhang B, et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes[J]. Nat Commun, 2021, 12(1): 4142. |
[10] | Cheung AY. Self-incompatibility in Papaver rhoeas: a role for ATP[J]. New Phytol, 2022, 236(5): 1625-1628. |
[11] |
Gervais C, Awad DA, Roze D, et al. Genetic architecture of inbreeding depression and the maintenance of gametophytic self-incompatibility[J]. Evolution, 2014, 68(11): 3317-3324.
doi: 10.1111/evo.12495 pmid: 25065256 |
[12] | Li C, Long Y, Lu MQ, et al. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in Camellia oleifera[J]. Front Plant Sci, 2023, 13: 1065872. |
[13] |
Silva NF, Goring DR. Mechanisms of self-incompatibility in flowering plants[J]. Cell Mol Life Sci, 2001, 58(14): 1988-2007.
doi: 10.1007/PL00000832 pmid: 11814052 |
[14] |
Hiscock SJ, McInnis SM. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond[J]. Trends Plant Sci, 2003, 8(12): 606-613.
pmid: 14659710 |
[15] | Herridge R, McCourt T, Jacobs JME, et al. Identification of the genes at S and Z reveals the molecular basis and evolution of grass self-incompatibility[J]. Front Plant Sci, 2022, 13: 1011299. |
[16] | Lian XP, Zhang SL, Huang GF, et al. Confirmation of a gametophytic self-incompatibility in Oryza longistaminata[J]. Front Plant Sci, 2021, 12: 576340. |
[17] |
Harkess A, Zhou JS, Xu CY, et al. The asparagus genome sheds light on the origin and evolution of a young Y chromosome[J]. Nat Commun, 2017, 8(1): 1279.
doi: 10.1038/s41467-017-01064-8 pmid: 29093472 |
[18] | 刘江, 刘刚, 曾益春, 等. 桑树GATA基因家族的全基因组鉴定与分析[J]. 西南农业学报, 2022, 35(12): 2724-2731. |
Liu J, Liu G, Zeng YC, et al. Genome-wide identification and analysis of mulberry(Morus notabilis)GATA gene family[J]. Southwest China J Agric Sci, 2022, 35(12): 2724-2731. | |
[19] | 陈曙, 张彧, 陈卓, 等. 玉米泛素连接酶U-box基因家族的全基因组鉴定及表达分析[J]. 西南农业学报, 2022, 35(3): 481-490. |
Chen S, Zhang Y, Chen Z, et al. Genome-wide identification and expression analysis of ubiquitin ligase U-box gene family in maize[J]. Southwest China J Agric Sci, 2022, 35(3): 481-490. | |
[20] |
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5): 1792-1797.
doi: 10.1093/nar/gkh340 pmid: 15034147 |
[21] |
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9): 1312-1313.
doi: 10.1093/bioinformatics/btu033 pmid: 24451623 |
[22] |
Letunic I, Bork P. Interactive Tree Of Life(iTOL): an online tool for phylogenetic tree display and annotation[J]. Bioinformatics, 2007, 23(1): 127-128.
doi: 10.1093/bioinformatics/btl529 pmid: 17050570 |
[23] | Bailey TL, Williams N, Misleh C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Res, 2006, 34(Web Server issue): W369-W373. |
[24] | Hu B, Jin JP, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. |
[25] |
Wang YP, Li JP, Paterson AH. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans[J]. Bioinformatics, 2013, 29(11): 1458-1460.
doi: 10.1093/bioinformatics/btt150 pmid: 23539305 |
[26] | Wen GZ. A simple process of RNA-sequence analyses by Hisat2, htseq and DESeq2[C]// Proceedings of the 2017 International Conference on Biomedical Engineering and Bioinformatics. Bangkok Thailand. New York: ACM, 2017: 11. |
[27] |
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[28] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[29] |
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer[J]. Nat Biotechnol, 2011, 29(1): 24-26.
doi: 10.1038/nbt.1754 pmid: 21221095 |
[30] | Delano W L. Pymol: An open-source molecular graphics tool[J]. Ccp4 Newslett Protein Crystallogr, 2002, 40(1): 82-92. |
[31] |
Waterhouse AM, Procter JB, Martin DMA, et al. Jalview Version 2—a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9): 1189-1191.
doi: 10.1093/bioinformatics/btp033 pmid: 19151095 |
[32] | 谷倩楠, 孔瑞文, 孙明哲, 等. 大豆混合盐碱胁迫应答基因GmDUF247-1的克隆及功能分析[J]. 植物遗传资源学报, 2024, 25(6): 978-989. |
Gu QN, Kong RW, Sun MZ, et al. Cloning and functional characterization of the GmDUF247-1 gene in soybean response to saline-alkaline stress[J]. J Plant Genet Resour, 2024, 25(06): 978-989. | |
[33] | Zhang FF, Liu YX, Liu F, et al. Genome-wide characterization and analysis of rice DUF247 gene family[J]. BMC Genomics, 2024, 25(1): 613. |
[34] |
Manzanares C, Barth S, Thorogood D, et al. A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass[J]. Mol Biol Evol, 2016, 33(4): 870-884.
doi: 10.1093/molbev/msv335 pmid: 26659250 |
[35] | Shin NR, Shin YH, Kim HS, et al. Function analysis of the PR55/B gene related to self-incompatibility in Chinese cabbage using CRISPR/Cas9[J]. Int J Mol Sci, 2022, 23(9): 5062. |
[36] | Sun LH, Cao SY, Zheng N, et al. Analyses of Cullin1 homologs reveal functional redundancy in S-RNase-based self-incompatibility and evolutionary relationships in eudicots[J]. Plant Cell, 2023, 35(2): 673-699. |
[1] | 许雪飞, 杨盼盼, 张文亮, 边光亚, 徐雷锋, 刘会超, 明军. 百合斑驳病毒在卷丹顶端分生组织中的分布[J]. 生物技术通报, 2024, 40(8): 212-220. |
[2] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[3] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[4] | 蔡梦鲜, 高作敏, 胡利娟, 冯群, 王洪程, 朱斌. 天然甘蓝型油菜C染色体组C1,C2缺体的创建及遗传分析[J]. 生物技术通报, 2023, 39(3): 81-88. |
[5] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[6] | 何硕康, 罗泽伟. QUARTET突变四倍体拟南芥的获得与表型分析[J]. 生物技术通报, 2018, 34(7): 119-125. |
[7] | 高丽丽, 刁晓明, 李云, 翟旭亮, 周春龙. 中华鳖性别决定中主导性因素的研究进展及思考[J]. 生物技术通报, 2018, 34(12): 41-49. |
[8] | 宋伟凤, 李明聪, 高峥. 环境中微生物原位检测方法研究进展[J]. 生物技术通报, 2017, 33(10): 26-32. |
[9] | 蒋骄云,田文斐,冯龙,曲宪成. 地高辛标记的黄鳝F64基因cRNA探针的制备及其应用[J]. 生物技术通报, 2016, 32(3): 137-141. |
[10] | 张彬, 王长利. 端粒长度检测方法及其应用[J]. 生物技术通报, 2016, 32(11): 93-98. |
[11] | 李国超, 余凯敏, 冯为民, 刘丽丽, 张家禹, 闫艳春. 17β-雌二醇对斑马鱼性别分化的影响[J]. 生物技术通报, 2015, 31(6): 200-208. |
[12] | 东天,刘凤娇,胡红霞,朱华. 鲟鱼性别分化相关基因研究进展[J]. 生物技术通报, 2015, 31(10): 62-70. |
[13] | 程安达,蒋丽,张保勇,王书,张研,刘永新,方平,李恒德,孙效文. 鲤鱼(Cyprinuscarpio,Cyprinidae)ants基因及其对鳞片发育的影响[J]. 生物技术通报, 2013, 0(3): 120-128. |
[14] | 蒋丽, 王阳阳, 程安达, 张保勇, 马龙,王书, 刘永新, 孙效文. 鲤鱼(Cyprinus carpio)外异蛋白A受体Edar基因的克隆及表达定位[J]. 生物技术通报, 2013, 29(12): 99-107. |
[15] | 王阳阳, 蒋丽, 程安达, 张保勇, 马龙, 李恒德, 孙效文. 鲤鱼Ectodysplasin-A(Eda)基因生物信息学及功能分析[J]. 生物技术通报, 2013, 29(11): 98-104. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||