生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 333-342.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1091
• 研究报告 • 上一篇
虎喜敏(
), 周冉, 王正兴, 李宇航, 罗仍卓么, 王兴平(
)
收稿日期:2024-11-08
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
王兴平,男,博士,教授,研究方向 :动物遗传育种;E-mail: wxp@nxu.edu.cn作者简介:虎喜敏,女,硕士研究生,研究方向 :动物遗传与分子育种;E-mail: huximin0808@163.com
基金资助:
HU Xi-min(
), ZHOU Ran, WANG Zheng-xing, LI Yu-hang, LUORENG Zhuo-ma, WANG Xing-ping(
)
Received:2024-11-08
Published:2025-05-26
Online:2025-06-05
摘要:
目的 长链非编码RNA(long non-coding RNA, lncRNA)能够通过直接调控下游分子或竞争性结合微小RNA(microRNA, miRNA)参与奶牛乳房炎症过程。lncRNA RNF5-AS1是新发现的lncRNA,旨在分析lncRNA RNF5-AS1在奶牛乳腺上皮细胞(bovine mammary epithelial cells, bMECs)炎症反应中的作用。 方法 利用RT-PCR技术进行lncRNA RNF5-AS1的克隆,采用核质分离法探究其在bMECs中的亚细胞定位情况。采用脂多糖(lipopolysaccharides, LPS)诱导bMECs建立炎症模型,并利用RT-qPCR检测lncRNA RNF5-AS1在炎性bMECs中的表达水平;干扰lncRNA RNF5-AS1后,检测促炎细胞因子表达水平,并利用CCK-8法和EdU法分别评估细胞活力和增殖能力;通过流式细胞术分析细胞凋亡情况。进一步通过在线工具预测lncRNA RNF5-AS1的潜在靶基因。 结果 lncRNA RNF5-AS1长度为1 125 bp,主要分布于细胞质中。在LPS诱导的bMECs炎症模型中,lncRNA RNF5-AS1表达水平显著上调;干扰lncRNA RNF5-AS1后,促炎因子IL-6和IL-8的表达水平显著下调,细胞活力和增殖能力显著增加,细胞凋亡水平极显著降低。KEGG结果表明,lncRNA RNF5-AS1可能通过靶向bta-miR-375、bta-miR-615、bta-miR-193a-5p、bta-miR-1291和bta-miR-1468而调控细胞炎症反应。 结论 lncRNA RNF5-AS1在bMECs炎症反应中表达上调,干扰后会抑制促炎因子的表达和细胞凋亡,提升细胞活力和增殖能力,提示其参与奶牛乳房炎的调控。
虎喜敏, 周冉, 王正兴, 李宇航, 罗仍卓么, 王兴平. 干扰lncRNA RNF5-AS1对奶牛乳腺上皮细胞炎症反应的影响[J]. 生物技术通报, 2025, 41(5): 333-342.
HU Xi-min, ZHOU Ran, WANG Zheng-xing, LI Yu-hang, LUORENG Zhuo-ma, WANG Xing-ping. Effect of Interference with lncRNA RNF5-AS1 on the Inflammatory Response of Bovine Mammary Epithelial Cells[J]. Biotechnology Bulletin, 2025, 41(5): 333-342.
基因 Gene | 基因ID Gene ID | 引物序列 Primer sequence(5′-3′) | 产物长度 Product length (bp) |
|---|---|---|---|
| lncRNARNF5-AS1 | PQ567897 | F: GAATAAAGCCCGCCCTAG R: GAGTGCCTGCCAATCATACA | 187 |
| IL-6 | 280826 | F: CACTCCATTCGCTGTCT R: GTGTCTCCTTGCTGCTT | 227 |
| IL-8 | 280828 | F: ACACATTCCACACCTTTCCAC R: ACCTTCTGCACCCACTTTTC | 149 |
| IL-1β | 281251 | F: CAACCGTACCTGAACCC R: GACACCACCTGCCTGAA | 110 |
| GAPDH | 281181 | F: GGCATCGTGGAGGGACTTATG R: CCAGTGAGCTTCCCGTTGAG | 186 |
| RPS18 | 326602 | F: GTGGTGTTGAGGAAAGCAGACA R: TGATCACACGTTCCACCTCATC | 79 |
| U6 | 613630 | F: GCTTCGGCAGCACATATACTAAAAT R: CGCTTCACGAATTTGCGTGTCAT | 89 |
表1 RT-qPCR 引物序列
Table 1 Primer sequences used for RT-qPCR
基因 Gene | 基因ID Gene ID | 引物序列 Primer sequence(5′-3′) | 产物长度 Product length (bp) |
|---|---|---|---|
| lncRNARNF5-AS1 | PQ567897 | F: GAATAAAGCCCGCCCTAG R: GAGTGCCTGCCAATCATACA | 187 |
| IL-6 | 280826 | F: CACTCCATTCGCTGTCT R: GTGTCTCCTTGCTGCTT | 227 |
| IL-8 | 280828 | F: ACACATTCCACACCTTTCCAC R: ACCTTCTGCACCCACTTTTC | 149 |
| IL-1β | 281251 | F: CAACCGTACCTGAACCC R: GACACCACCTGCCTGAA | 110 |
| GAPDH | 281181 | F: GGCATCGTGGAGGGACTTATG R: CCAGTGAGCTTCCCGTTGAG | 186 |
| RPS18 | 326602 | F: GTGGTGTTGAGGAAAGCAGACA R: TGATCACACGTTCCACCTCATC | 79 |
| U6 | 613630 | F: GCTTCGGCAGCACATATACTAAAAT R: CGCTTCACGAATTTGCGTGTCAT | 89 |
图1 lncRNA RNF5-AS1的序列特征与亚细胞定位A:lncRNA RNF5-AS1 PCR 产物的琼脂糖凝胶电泳;M:DL2000 DNA marker;B:编码能力预测结果;C:亚细胞定位预测结果;D:亚细胞定位检测结果;M:DL500 DNA marker;1:细胞核;2:细胞质;3:全细胞
Fig. 1 Sequence features and subcellular localization of lncRNA RNF5-AS1A: Agarose gel electrophoresis of PCR product of lncRNA RNF5-AS1; M: DL2000 DNA marker. B: Predicted result of coding ability. C: Predicted result of subcellular localization. D: Predicted results of subcellular localization assay. M: DL500 DNA marker; 1: nucleus; 2: cytoplasm; 3: whole cell
图2 lncRNA RNF5-AS1在bMECs炎症反应中的表达水平A-C:主要炎症因子在bMECs炎症反应中的表达量;D:lncRNA RNF5-AS1在bMECs炎症反应中的表达量;* P <0.05,** P <0.01,ns P >0.05,下同
Fig. 2 Expressions of lncRNA RNF5-AS1 in the inflammatory response of bMECsA-C: The expression of inflammatory factors in bMECs inflammation. D: The expression of lncRNA RNF5-AS1 in bMECs inflammation; * P <0.05, ** P <0.01, ns P >0.05, the same below
图3 干扰lncRNA RNF5-AS1对bMECs炎症反应的影响A:lncRNA RNF5-AS1干扰效率;B-C:炎症因子mRNA 水平
Fig. 3 Effects of interference with lncRNA RNF5-AS1 on the inflammatory response of bMECsA: Interference efficiency of lncRNA RNF5-AS1. B-C: mRNA levels of inflammatory factors
图5 干扰lncRNA RNF5-AS1 对炎性bMECs的影响A:EdU检测细胞增殖(红色荧光为EdU标记的增殖细胞;蓝色荧光为Hoechst标记的全部细胞);B:流式细胞术检测细胞凋亡
Fig. 5 Effect of interference with lncRNA RNF5-AS1 on inflammatory bMECsA: EdU assay of cell proliferation(Red fluorescence is EdU-labeled proliferating cells; blue fluorescence is Hoechst-labeled all cells). B: Flow cytometry assay of apoptosis
图6 lncRNA RNF5-AS1的靶基因预测A:靶基因预测结果;B:bta-miR-375的靶基因富集的信号通路;C:bta-miR-615的靶基因富集的信号通路;D:bta-miR-193a-5p的靶基因富集的信号通路;E:bta-miR-1291的靶基因富集的信号通路;F:bta-miR-1468的靶基因富集的信号通路
Fig. 6 Prediction of target genes of lncRNA RNF5-AS1A: Prediction results of target genes; B: signaling pathway enriched for the target genes of bta-miR-375; C: signaling pathway enriched for the target genes of bta-miR-615; D: signaling pathway enriched for the target genes of bta-miR-193a-5p; E: signaling pathway enriched for the target genes of bta-miR-1291; F: signaling pathway enriched for the target genes of bta-miR-1468
| 1 | Mushtaq S, Shah AM, Shah A, et al. Bovine mastitis: an appraisal of its alternative herbal cure [J]. Microb Pathog, 2018, 114: 357-361. |
| 2 | Ashraf A, Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis [J]. Anim Health Res Rev, 2020, 21(1): 36-49. |
| 3 | Michael Akers R, Nickerson SC. Mastitis and its impact on structure and function in the ruminant mammary gland [J]. J Mammary Gland Biol Neoplasia, 2011, 16(4): 275-289. |
| 4 | Oyelami FO, Usman T, Suravajhala P, et al. Emerging roles of noncoding RNAs in bovine mastitis diseases [J]. Pathogens, 2022, 11(9): 1009. |
| 5 | Petzl W, Zerbe H, Günther J, et al. Pathogen-specific responses in the bovine udder. Models and immunoprophylactic concepts [J]. Res Vet Sci, 2018, 116: 55-61. |
| 6 | Li RH, Fang HT, Shen JL, et al. Curcumin alleviates LPS-induced oxidative stress, inflammation and apoptosis in bovine mammary epithelial cells via the NFE2L2 signaling pathway [J]. Toxins, 2021, 13(3): 208. |
| 7 | Ying YT, Yang J, Tan X, et al. Escherichia coli and Staphylococcus aureus differentially regulate Nrf2 pathway in bovine mammary epithelial cells: relation to distinct innate immune response [J]. Cells, 2021, 10(12): 3426. |
| 8 | Zhou MT, Tang YQ, Liao L, et al. Phillygenin inhibited LPS-induced RAW 264.7 cell inflammation by NF-κB pathway [J]. Eur J Pharmacol, 2021, 899: 174043. |
| 9 | Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions [J]. Nat Rev Genet, 2009, 10(3): 155-159. |
| 10 | Zhao LH, Wang JJ, Li YY, et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants [J]. Nucleic Acids Res, 2021, 49(D1): D165-D171. |
| 11 | Wang JP, Hu QC, Yang J, et al. Differential expression profiles of lncRNA following LPS-induced inflammation in bovine mammary epithelial cells [J]. Front Vet Sci, 2021, 8: 758488. |
| 12 | Wang MQ, Yang NS, Laterrière M, et al. Multi-omics integration identifies regulatory factors underlying bovine subclinical mastitis [J]. J Anim Sci Biotechnol, 2024, 15(1): 46. |
| 13 | Jing HY, Chen Y, Qiu CW, et al. LncRNAs transcriptome analysis revealed potential mechanisms of selenium to mastitis in dairy cows [J]. Biol Trace Elem Res, 2022, 200(10): 4316-4324. |
| 14 | Bai ZX, Wu YZ, Cai WD, et al. High-throughput analysis of lncRNA in cows with naturally infected Staphylococcus aureus mammary gland [J]. Anim Biotechnol, 2023, 34(7): 2166-2174. |
| 15 | Ma MR, Pei YF, Wang XX, et al. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway [J]. Cell Prolif, 2019, 52(1): e12525. |
| 16 | Yang W, Li XZ, Qi SP, et al. lncRNA H19 is involved in TGF- β 1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway [J]. PeerJ, 2017, 5: e3950. |
| 17 | Wang H, Wang XX, Li XR, et al. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis [J]. FEBS J, 2019, 286(9): 1780-1795. |
| 18 | Jiao P, Wang JP, Yang J, et al. Bta-miR-223 targeting the RHOB gene in dairy cows attenuates LPS-induced inflammatory responses in mammary epithelial cells [J]. Cells, 2022, 11(19): 3144. |
| 19 | Li YH, Ren QQ, Wang XP, et al. Bta-miR-199a-3p inhibits LPS-induced inflammation in bovine mammary epithelial cells via the PI3K/AKT/NF-κB signaling pathway [J]. Cells, 2022, 11(21): 3518. |
| 20 | Wang XX, Wang H, Zhang RQ, et al. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells [J]. Int J Biol Sci, 2020, 16(2): 251-263. |
| 21 | Cao Z, Pan XY, Yang Y, et al. The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier [J]. Bioinformatics, 2018, 34(13): 2185-2194. |
| 22 | Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible [J]. Nucleic Acids Res, 2006, 34(Web Server issue): W451-W454. |
| 23 | Sticht C, Torre CDL, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites [J]. PLoS One, 2018, 13(10): e0206239. |
| 24 | McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy [J]. Science, 2019, 366(6472): eaav1741. |
| 25 | Kester HJ, Sorter DE, Hogan JS. Activity and milk compositional changes following experimentally induced Streptococcus uberis bovine mastitis [J]. J Dairy Sci, 2015, 98(2): 999-1004. |
| 26 | Lin CJ, Zhu YF, Hao ZY, et al. Genome-wide analysis of LncRNA in bovine mammary epithelial cell injuries induced by Escherichia coli and Staphylococcus aureus [J]. Int J Mol Sci, 2021, 22(18): 9719. |
| 27 | Lyu CC, Ji XY, Che HY, et al. CGA alleviates LPS-induced inflammation and milk fat reduction in BMECs through the NF-κB signaling pathway [J]. Heliyon, 2024, 10(3): e25004. |
| 28 | Zhou M, Barkema HW, Gao J, et al. microRNA miR-223 modulates NLRP3 and Keap1, mitigating lipopolysaccharide-induced inflammation and oxidative stress in bovine mammary epithelial cells and murine mammary glands [J]. Vet Res, 2023, 54(1): 78. |
| 29 | Cornut M, Bourdonnay E, Henry T. Transcriptional regulation of inflammasomes [J]. Int J Mol Sci, 2020, 21(21): 8087. |
| 30 | Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases [J]. Theranostics, 2017, 7(6): 1543-1588. |
| 31 | Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: an evolving chemokine [J]. Cytokine, 2022, 153: 155828. |
| 32 | Chen Y, Yang J, Huang Z, et al. Exosomal lnc-AFTR as a novel translation regulator of FAS ameliorates Staphylococcus aureus-induced mastitis [J]. Biofactors, 2022, 48(1): 148-163. |
| 33 | 王晋鹏, 罗仍卓么, 李彦霞, 等. lncRNA RRAS2-AS1在LPS诱导奶牛乳腺上皮细胞炎症中的功能 [J]. 中国农业科学, 2024, 57(14): 2874-2891. |
| Wang JP, Luoreng ZM, Li YX, et al. The function of lncRNA RRAS2-AS1 in LPS induced bovine mammary epithelial cells inflammation [J]. Sci Agric Sin, 2024, 57(14): 2874-2891. | |
| 34 | 焦鹏, 王兴平, 汪书哲, 等. 奶牛乳腺炎差异表达lncRNA BCL2对炎症及凋亡相关mRNA表达的影响 [J]. 畜牧兽医学报, 2022, 53(7): 2160-2171. |
| Jiao P, Wang XP, Wang SZ, et al. Effect of differentially expressed lncRNA BCL2 in dairy cow with mastitis on the expression of inflammation and apoptosis related mRNA [J]. Acta Vet Zootechnica Sin, 2022, 53(7): 2160-2171. | |
| 35 | Zhang K, Shi ZM, Chang YN, et al. The ways of action of long non-coding RNAs in cytoplasm and nucleus [J]. Gene, 2014, 547(1): 1-9. |
| 36 | Yu Y, He YN, Shao YB, et al. lncRNA PCNAP1 predicts poor prognosis in breast cancer and promotes cancer metastasis via miR-340-5p-dependent upregulation of SOX4 [J]. Oncol Rep, 2020, 44(4): 1511-1523. |
| 37 | Hu YJ, Dong HJ, Huang JJ, et al. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) promotes the inflammation and apoptosis of otitis media with effusion through targeting microRNA (miR)-495 and activation of p38 MAPK signaling pathway [J]. Bioengineered, 2021, 12(1): 8080-8088. |
| 38 | Xie W, Jiang LY, Huang XY, et al. lncRNA MEG8 is downregulated in osteoarthritis and regulates chondrocyte cell proliferation, apoptosis and inflammation [J]. Exp Ther Med, 2021, 22(4): 1153. |
| 39 | Xie BB, Lin FQ, Bao W, et al. Long noncoding RNA00324 is involved in the inflammation of rheumatoid arthritis by targeting miR-10a-5p via the NF-κB pathway [J]. Immun Inflamm Dis, 2023, 11(6): e906. |
| [1] | 吴永娜, 滕文龙, 张磊, 王德富, 牛颜冰. 连翘叶茶对大鼠肝硬化的影响及其机理研究[J]. 生物技术通报, 2024, 40(11): 285-295. |
| [2] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
| [3] | 李宇航, 王兴平, 杨箭, 罗仍卓么, 任倩倩, 魏大为, 马云. miR-665在奶牛乳腺上皮细胞炎症中的表达及功能分析[J]. 生物技术通报, 2022, 38(5): 159-168. |
| [4] | 宋绍征, 于康英, 陆睿, 张婷, 陈朝军, 潘生强, 成勇, 周鸣鸣. Cre/Loxp系统介导转基因山羊乳腺上皮细胞标记基因的删除[J]. 生物技术通报, 2019, 35(12): 105-111. |
| [5] | 崔新洁,王婷,刘秉春,陶林,王潇. 牛奶中乳腺上皮细胞的分离培养及鉴定[J]. 生物技术通报, 2013, 0(3): 107-113. |
| [6] | 李喜艳;王加启;魏宏阳;卜登攀;胡菡;周凌云;. MTT比色法检测赖氨酸、蛋氨酸对体外培养的奶牛乳腺上皮细胞增殖的影响[J]. , 2010, 0(03): 143-148. |
| [7] | 崔瑞莲;王加启;卜登攀;魏宏阳;胡菡;周凌云;. 甲状腺素T4对体外高温培养奶牛乳腺上皮细胞生长和凋亡的影响[J]. , 2009, 0(12): 119-123. |
| [8] | 孙国凤. 初乳中乳腺上皮细胞体细胞克隆牛的诞生[J]. , 1999, 0(06): 50-51. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||