[1] Gowen CM, Fong S. Phenome analysis of microorganisms[M]//Edwards D, Stajich and D. Bioinformatics Tools and Applications, J Hansen, New York:editors. Springer, 2009. [2] Kelsoe JR, Niculescu AB 3rd. Finding genes for bipolar disorder in the functional genomics era:from convergent functional genomics to phenomics and back[J]. CNS Spectr, 2002, 7(3):215-216, 223-226. [3] Niculescu AB, Lulow LL, Ogden CA, et al. PhenoChipping of psych-otic disorders: A novel approach for deconstructing and quantitating psychiatric phenotypes[J]. American Journal of Medical Genetics Part B:Neuropsychiatric Genetics, 2006, 141B(6):653-662. [4] http://www.unisa.edu.au/maths/phenomics/about.asp [5] Bilder RM, Sabb FW, Cannon TD, et al. Phenomics:the systematic study of phenotypes on a genome-wide scale[J]. Neuroscience, 2009, 164:30-42. [6] Joy T, Hegele RA. Genetics of metabolic syndrome:Is there a role for phenomics?[J]Curr Atheroscler Rep, 2008, 10(3):201-208. [7] Manev H, Manev R. Benefits of neuropsychiatric phenomics:example of the 5-lipoxygenase-leptin-alzheimer connection[J]. Cardiovasc Psychiatry Neurol, 2010(2010), Article ID 838164, doi:10.1155/2010/838164. [8] Finkel E. With ‘Phenomics’, plant scientists hope to shift breeding into overdrive[J]. Science, 2009, 325:380-381. [9] Furbank RT. Plant phenomics:from gene to form and function[J]. Functional Plant Biology, 2009, 36:v-vi. [10] Furbank RT, von Caemmerer S, Sheehy J, et al. C4 rice:a challenge for plant phenomics[J]. Functional Plant Biology, 2009, 36:845-856. [11] http://www.garnetcommunity.org.uk/resources/phenomics [12] http://www.thebiotron.ca/ [13] http://www.aber.ac.uk/en/ibers/news-events/new_builds_at_ibers/ [14] http://www.plantphenomics.com/ [15] http://www.fz-juelich.de/icg/icg-3/jppc [16] http://www1.montpellier.inra.fr/ibip/lepse/english/ [17] http://www.plantphenomics.org.au/ [18] IRGSP. The map-based sequence of the rice genome[J]. Nature, 2005, 436:793-800. [19] Itoh T, Tanaka T, Barrero RA, et al. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana[J]. Genome Res, 2007, 17:175-183 [20] Ouyang S, Zhu W, Hamilton J, et al. The TIGR Rice Genome Annotation Resource:improvements and new features[J]. Nucleic Acids Res, 2007, 35:D883-887. [21] Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice[J]. Science, 2003, 301:376-379. [22] Li L, Wang X, Stolc V, et al. Genome-wide transcription analyses in rice using tiling microarrays[J]. Nat Genet, 2006, 38:124-129. [23] Wasaki J, Shinano T, Onishi K, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J]. J Exp Bot, 2006, 57:2049-2059. [24] Gibbings JG, Cook BP, Dufault MR, et al. Global transcript analysis of rice leaf and seed using SAGE technology[J]. Plant Biotech-nol J, 2003, 1:271-285. [25] Su CL, Chung CI, Lin YC, et al. Statistical analysis of rice SAGE data[J]. J Genet Mol Biol, 2005, 16:248-260. [26] Nakano M, Nobuta K, Vemaraju K, et al. Plant MPSS databases:signature-based transcriptional resources for analyses of mRNA and small RNA[J]. Nucleic Acids Res, 2006, 34:D731-735. [27] Komatsu S, Tanaka N. Rice proteome analysis:a step toward functional analysis of the rice genome[J]. Proteomics, 2005, 5:938 -949. [28] Wu JL, Wu C, Lei C, et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics[J]. Plant Mol Biol, 2005, 59:85-97. [29] Hsing YI, Chern CG, Fan MJ, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics[J]. Plant Mol Biol, 2007, 63:351-364. [30] Jeong DH, An S, Kang HG, et al. T-DNA insertional mutagenesis for activation tagging in rice[J]. Plant Physiol, 2002, 130:1636-1644. [31] Chen S, Jin W, Wang M, et al. Distribution and characterization of over 1000 T-DNA tags in rice genome[J]. Plant J, 2003, 36:105-113. [32] Wu C, Li X, Yuan W, et al. Development of enhancer trap lines for functional analysis of the rice genome[J]. Plant J, 2003, 35:418-427. [33] Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics[J]. Curr Opin Plant Biol, 2001, 4:118-122. [34] Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon -rich regions of the genome[J]. Plant Cell, 2003, 15:1771-1780. [35] Upadhyaya NM, Zhu QH, Zhou XR, et al. Dissociation(Ds)constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice[J]. Theor Appl Genet, 2006, 112:1326-1341. [36] van Enckevort LJ, Droc G, Piffanelli P, et al. EU-OSTID:a collection of transposon insertional mutants for functional genomics in rice[J]. Plant Mol Biol, 2005, 59:99-110. [37] Kolesnik T, Szeverenyi I, Bachmann D, et al. Establishing an efficient Ac/Ds tagging system in rice:large-scale analysis of Ds flanking sequences[J]. Plant J, 2004, 37:301-314. [38] Hirochika H, Guiderdoni E, An G, et al. Rice mutant resources for gene discovery[J]. Plant Mol Biol, 2004, 54:325-334. [39] An G, Lee S, Kim SH, et al. Molecular genetics using T-DNA in rice[J]. Plant Cell Physiol, 2005, 46:14-22. [40] Guiderdoni E, An G, Yu SM, et al. T-DNA insertion mutants as a resource for rice functional genomics[M]// Upadhyaya NM(ed)Rice functional genomics-challenges, progress and prospects. New York:Springer, 2007:181-221. [41] Hsing YI, Chern CG, Fan MJ, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics[J]. Plant Mol Biol, 2007, 63:351-364. [42] Vaas LAI, Sikorski J, Hofner B, et al. opm:an R package for analy-sing OmniLog? phenotype microarray data[J]. Bioinformatics 2013, First published online:June 5, 2013. [43] Zhang J, Biswas I. A phenotypic microarray analysis of a Streptoco-ccus mutans liaS mutant[J]. Microbiology, 2009, 155:61-68. [44] Bochner BR. Phenotype microArray technology:A “phenomics” tool for studying cells and optimizing bioprocesses[C]. Recent Advances in Fermentation Technology. San Diego, CA:Marriott Mission Valley, 2009. [45] Zorych I, Sturino J, Bliznyuk N, et al. Statistical methods for comparative phenomics using high-throughput phenotype microarrays[J]. Int J Biostat, 2010, 6(1):Article 29. doi:10.2202/1557-4679.1227. [46] Fernandez-Ricaud L, Warringer J, Ericson E, et al. PROPHECY—a database for high-resolution phenomics[J]. Nucleic Acids Research, 2005, 33:D369-D373. [47] Tibshirani R. Regression shrinkage and selection via the Lasso[J]. J Royal Stat Soc Ser B, 1996, 58(1):267-288. [48] Rockman MV. Reverse engineering the genotype- phenotype map with natural genetic variation[J]. Nature, 2008, 456:738-744. [49] Ochs MF. Knowledge-based data analysis comes of age[J]. Brief Bioinformatics, 2010, 11:30-39. [50] Zhu J, Lum PY, Lamb J, et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. cytogenet[J]. Genome Res, 2004, 105:363-374. [51] Li RH, Tsaih SW, Shockley K, et al. Structural model analysis of multiple quantitative traits[J]. PLoS Genet, 2006, 2:1046-1057. [52] Burnham KP, Anderson DR. Model selection and multi-model inference:A practical information-theoretic approach[M]. New York:Springer, 2002. [53] Claeskens G, Hjort NL. The focused information criterion. J Am Stat Assoc, 2003, 98:900-916. [54] Wold S, Martens H, Wold H. The multivariate calibration-problem in chemistry solved by the PLS method[J]. Lect Notes Math, 1983, 973:286-293. [55] Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests[J]. Genet Epidemiol, 2005, 28:171-182. [56] Breiman L. Statistical modeling:the two cultures[J]. Stat Sci, 2001, 16(3):199-215. [57] Yang J, Benyamin B, McEvoy BP, et al. Common SNPs explain a large proportion of the heritability for human height[J]. Nature Genet, 2010, 42:565-569. [58] Han B, Kang HM, Eskin E. Rapid and accurate multiple testing corr-ection and power estimation for millions of correlated markers[J]. PLoS Genet, 2009, 5(4):e1000456. [59] Sandve GK, Gundersen S, Rydbeck H, et al. The Genomic Hyper-Browser:inferential genomics at the sequence level[J]. Genome Biology, 2010, 11:R121 [60] Bilder RM, Sabb FW, Cannon TD, et al. Phenomics:the systemtic study of phenotypes on a genome-wide scale[J]. Neuroscience, 2009, 164:30-42. [61] Mehler MF. Epigenetic principles and mechanisms underlying ner-vous system functions in health and disease[J]. Prog Neurobiol, 2008, 86(4):305-341. |