[1] Berg JM, Shi Y. The galvanization of biology:a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252):1081-1085.
[2] Takatsuji H. Zinc-finger transcription factors in plants[J]. Cell Mol Life Sci, 1998, 54(6):582-596.
[3] Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. Eur J Biochem, 1999, 262(2):247-257.
[4] Singh K, Foley RC, O?ate-Sánchez L. Transcription factors in plant defense and stress responses[J]. Curr Opin Plant Biol, 2002, 5(5):430-436.
[5] 杨致荣, 王兴春, 李西明, 杨长登. 高等植物转录因子的研究进展[J]. 遗传, 2004, 26(3):403-408.
[6] 向建华, 李灵之, 陈信波. 植物非生物逆境相关锌指蛋白基因的研究进展[J]. 核农学报, 2012, 26(4):666-672.
[7] Kozaki A, Hake S, Colasanti J. The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties[J]. Nucleic Acids Res, 2004, 32(5):1710-1720.
[8] Wu C, You C, Li C, et al. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice[J]. Proc Natl Acad Sci USA, 2008, 105(35):12915-12920.
[9] Zeba N, Isbat M, Kwon NJ, et al. Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco[J]. Planta, 2009, 229(4):861-871.
[10] Kam J, Gresshoff P, Shorter R, Xue GP. Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root[J]. Plant Sci, 2007, 173(6):650-659.
[11] 郭丽香, 高世庆, 唐益苗, 等. 小麦TaCRF2 基因的克隆及其在烟草中的初步功能验证[J].作物学报, 2011, 37(8):1389-1397.
[12] Stone SL, Hauksdóttir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1):13-30.
[13] Lim SD, Yim WC, Moon JC, et al. A gene family encoding RING finger proteins in rice:their expansion, expression diversity, and co-expressed genes[J]. Plant Mol Biol, 2010, 72(4-5):369-380.
[14] Li Y, Wu B, Yu Y, et al. Genome-wide analysis of the RING finger gene family in apple[J]. Mol Genet Genomics, 2011, 286(1):81-94.
[15] Cheng MC, Hsieh EJ, Chen JH, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response[J]. Plant Physiol, 2012, 158(1):363-375.
[16] Liu K, Wang L, Xu Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007, 226(4):1007-1016.
[17] Lee HK, Cho SK, Son O, et al. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J]. Plant Cell, 2009, 21(2):622-641.
[18] Xia Z, Liu Q, Wu J, Ding J. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize[J]. Gene, 2012, 495(2):146-153.
[19] Lim SD, Cho HY, Park YC, et al. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance[J]. J Exp Bot, 2013, 64(10):2899-2914.
[20] Satijn DP, Gunster MJ, van der Vlag J, et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor[J]. Mol Cell Biol, 1997, 17(7):4105-4113.
[21] Yang X, Sun C, Hu Y, Lin Z. Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum[J]. J Biosci, 2008, 33(1):103-112.
[22] Ma K, Xiao J, Li X, et al. Sequence and expression analysis of the C3HC4-type RING finger gene family in rice[J]. Gene, 2009, 444(1-2):33-45.
[23] Mukoko Bopopi J, Vandeputte OM, Himanen K, et al. Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses[J]. J Exp Bot, 2010, 61(1):297-310.
[24] Park GG, Park JJ, Yoon J, et al. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1(OsDSG1), controls seed germination and stress responses in rice[J]. Plant Mol Biol, 2010, 74(4-5):467-478.
[25] Lai J, Chen H, Teng K, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle[J]. Plant J, 2009, 57(5):905-917.
[26] 宋素胜, 谢道昕. 泛素蛋白酶体途径及其对植物生长发育的调控[J]. 植物学通报, 2006, 23(5):564-577.
[27] Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants[J]. Ann Bot, 2007, 99(5):787-822.
[28] Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant J, 2010, 61(6):1029-1040.
[29] Henriques R, Jang IC, Chua NH. Regulated proteolysis in light-related signaling pathways[J]. Curr Opin Plant Biol, 2009, 12(1):49-56.
[30] Kuras L, Rouillon A, Lee T, et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment[J]. Mol Cell, 2002, 10(1):69-80.
[31] Lu CS, Truong LN, Aslanian A, et al. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination[J]. J Biol Chem, 2012, 287(52):43984-43994.
[32] Lin SS, Martin R, Mongrand S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. Plant J, 2008, 56(4):550-561.
[33] Zhang Y, Feng S, Chen F, et al. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes[J]. Plant Cell, 2008, 20(6):1437-1455.
[34] Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification:an emerging theme in plant-microbe interactions[J]. Cell Res, 2006, 16(5):413-426.
[35] Trujillo M, Shirasu K. Ubiquitination in plant immunity[J]. Curr Opin Plant Biol, 2010, 13(4):402-408.
[36] Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1(RHF1)encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum[J]. Genetica, 2013, 141(1-3):11-21.
[37] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2):221-227.
[38] Ahuja I, de Vos RC, Bones AM, Hall RD. Plant molecular stress responses face climate change[J]. Trends Plant Sci, 2010, 15(12):664-674.
[39] Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis[J]. Plant J, 2006, 47(3):343-355.
[40] Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress[J]. Plant Physiol, 2010, 154(4):1983-1997
[41] Cho SK, Ryu MY, Seo DH, et al. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses[J]. Plant Physiol, 2011, 157(4):2240-2257.
[42] Bu Q, Li H, Zhao Q, et al. The Arabidopsis RING finger E3 ligase RHA2a Is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. Plant Physiol, 2009, 150(1):463-481.
[43] Li H, Jiang H, Bu Q, et al. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response[J]. Plant Physiol, 2011, 156(2):550-563.
[44] Zhang Y, Yang C, Li Y, et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J]. Plant Cell, 2007, 19(6):1912-1929.
[45] Gao T, Wu Y, Zhang Y, et al. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J]. Plant Mol Biol, 2011, 76(1-2):145-156.
[46] Bae H, Kim SK, Cho SK, et al. Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice(Oryza sativa L.)[J]. Plant Sci, 2011, 180(6):775-782.
[47] Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants:An overview[J]. Environmental and Experimental Botany, 2007, 61(3):199-223.
[48] Kampinga HH, Brunsting JF, Stege GJ, et al. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals:role of heat shock proteins[J]. Exp Cell Res, 1995, 219(2):536-546.
[49] Alfonso M, Yruela I, Almárcegui S, et al. Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max(L.)Merr. cell cultures deficient in fatty acid desaturation[J]. Planta, 2001, 212(4):573-582.
[50] Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. J Plant Physiol, 2004, 161(4):405-413.
[51] Larkindale J, Hall JD, Knight MR, Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance[J]. Plant Physiol, 2005, 138(2):882-897.
[52] Dong CH, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci USA, 2006, 103(21):8281-2886.
[53] Sahi C, Singh A, Blumwald, Grover A. Beyond osmolytes and transporters:novel plant salt-stress tolerance-related genes from transcriptional profiling data[J]. Physiologia Planta, 2006, 127(1):1-9.
[54] Dos Reis SP, Tavares Lde S, Costa Cde N, et al. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava[J]. Mol Biol Rep, 2012, 39(6):6513-6519.
[55] Du QL, Cui WZ, Zhang CH, Yu DY. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean(Glycine max)[J]. Mol Biol Rep, 2010, 37(2):685-693.
[56] Kang M, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity[J]. Plant Mol Biol, 2011, 75(4-5):451-466.
[57] Jung YJ, Lee IH, Nou IS, et al. BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress[J]. Plant Biol(Stuttg), 2013, 15(2):274-283.
[58] Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170. |