生物技术通报 ›› 2015, Vol. 31 ›› Issue (9): 49-59.doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.007
殷子斐1, 王丽娜1, 王园1, 凌晨2
收稿日期:
2014-11-04
出版日期:
2015-09-15
发布日期:
2015-09-16
作者简介:
殷子斐,女,博士研究生,研究方向:中医药与基因治疗的联合应用;E-mail:yinzifei870730smmu@163.com
基金资助:
Yin Zifei1, Wang Li’na1, Wang Yuan1, Ling Chen2
Received:
2014-11-04
Published:
2015-09-15
Online:
2015-09-16
摘要: 重组型腺相关病毒(recombinant adeno-associated virus,rAAV)载体是目前基因治疗研究中常用的、非常有前景的载体之一。欧洲第一个批准上市的基因治疗药物正是基于rAAV。然而,rAAV的转导效率相对有限,导致其治疗成本过高;且过高剂量的rAAV可以激发人体的免疫反应,降低其疗效。因此,如何提高rAAV的转导效率一直是基因治疗领域研究的热点之一。目前常用的提高rAAV转导效率的方法有:使用组织特异性强的血清型/变体、应用蛋白酶体抑制剂、突变衣壳蛋白表面裸露氨基酸、增加单链DNA的第二链合成、构建自身互补型双链载体等。就这些方法各自的原理、应用现状及优劣势进行系统地综述。
殷子斐, 王丽娜, 王园, 凌晨. 提高重组型腺相关病毒转导效率的研究现状[J]. 生物技术通报, 2015, 31(9): 49-59.
Yin Zifei, Wang Li’na, Wang Yuan, Ling Chen. Research Advances on Increasing the Transduction Efficiency of Recombinant Adeno-associated Viral Vectors[J]. Biotechnology Bulletin, 2015, 31(9): 49-59.
[1]Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications[J]. Methods Enzymol, 2012, 507:229-254. [2]Griesenbach U, Alton EW. Current status and future directions of gene and cell therapy for cystic fibrosis[J]. BioDrugs, 2011, 25(2):77-88. [3]Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV:progress and challenges[J]. Nat Rev Genet, 2011, 12(5):341-355. [4]Tal J. Adeno-associated virus-based vectors in gene therapy[J]. J Biomed Sci, 2000, 7(4):279-291. [5]Masat E, Pavani G, Mingozzi F. Humoral immunity to AAV vectors in gene therapy:challenges and potential solutions[J]. Discov Med, 2013, 15(85):379-389. [6]Mingozzi F, High KA. Immune responses to AAV in clinical trials[J]. Curr Gene Ther, 2011, 11(4):321-330. [7]Hareendran S, Balakrishnan B, Sen D, et al. Adeno-associated virus(AAV)vectors in gene therapy:immune challenges and strategies to circumvent them[J]. Rev Med Virol, 2013, 23(6):399-413. [8]Logan GJ, Alexander IE. Adeno-associated virus vectors:immunobiology and potential use for immune modulation[J]. Curr Gene Ther, 2012, 12(4):333-343. [9]刁勇, 许瑞安. 重组腺相关病毒载体诱导的天然免疫反应及机制[J]. 微生物学报, 2012, 52(5):550-557. [10]张凤兰, 文朝阳, 丁卫. 腺相关病毒基因治疗载体的改良与应用[J]. 首都医科大学学报, 2009, 30(4):565-572. [11]Qing K, Khuntirat B, Mah C, et al. Adeno-associated virus type 2-mediated gene transfer:correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo[J]. J Virol, 1998, 72(2):1593-1599. [12]Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors:point mutations in tyrosines lead to high-efficiency transduction at lower doses[J]. Proc Natl Acad Sci USA, 2008, 105(22):7827-732. [13]Seisenberger G, Ried MU, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus[J]. Science, 2001, 294(5548):1929-1932. [14]Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway[J]. Cell Host Microbe, 2011, 10(6):563-576. [15]Johnson JS, Gentzsch M, Zhang L, et al. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis[J]. PLoS Pathog, 2011, 7(5):e1002053. [16]Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes:vector toolkit for human gene therapy[J]. Mol Ther, 2006, 14(3):316-327. [17]Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy[J]. Proc Natl Acad Sci USA, 2002, 99(18):11854-11859. [18]Miyake K, Miyake N, Yamazaki Y, et al. Serotype-independent method of recombinant adeno-associated virus(AAV)vector production and purification[J]. J Nippon Med Sch, 2012, 79(6):394-402. [19]Ling C, Lu Y, Cheng B, et al. High-efficiency transduction of liver cancer cells by recombinant adeno-associated virus serotype 3 vectors[J]. J Vis Exp, 2011, (49):doo:10.3791/2538. [20]Ling C, Lu Y, Kalsi JK, et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3[J]. Hum Gene Ther, 2010, 21(12):1741-1747. [21]Cheng B, Ling C, Dai Y, et al. Development of optimized AAV3 serotype vectors:mechanism of high-efficiency transduction of human liver cancer cells[J]. Gene Ther, 2012, 19(4):375-384. [22]Markakis EA, Vives KP, Bober J, et al. Comparative transduction efficiency of AAV vector serotypes 1-6 in the substantia nigra and striatum of the primate brain[J]. Mol Ther, 2010, 18(3):588-593. [23]Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain[J]. PLoS One, 2013, 8(9):e76310. [24]Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery[J]. Gene Ther, 2012, 19(6):694-700. [25]Perabo L, Endell J, King S, et al. Combinatorial engineering of a gene therapy vector:directed evolution of adeno-associated virus[J]. J Gene Med, 2006, 8(2):155-162. [26]Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus(AAV)vector that crosses the seizure-compromised blood-brain barrier(BBB)[J]. Mol Ther, 2010, 18(3):570-578. [27]Kienle E, Senis E, B?rner K, et al. Engineering and evolution of synthetic adeno-associated virus(AAV)gene therapy vectors via DNA family shuffling[J]. J Vis Exp, 2012, (62). pii:3819. doi:10.3791/3819 [28]Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus(AAV)evolved by DNA shuffling and in vivo selection[J]. Proc Natl Acad Sci USA, 2009, 106(10):3946-3951. [29]Koerber JT, Schaffer DV. Transposon-based mutagenesis generates diverse adeno-associated viral libraries with novel gene delivery properties[J]. Methods Mol Biol, 2008:434161-434170. [30]Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors[J]. Nat Biotechnol, 2003, 21(9):1040-1046. [31]Varadi K, Michelfelder S, Korff T, et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors[J]. Gene Ther, 2012, 19(8):800-809. [32]Lisowski L, Dane AP, Chu K, et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model[J]. Nature, 2014, 506(7488):382-386. [33]Marsic D, Govindasamy L, Currlin S, et al. Vector design tour de force:integrating combinatorial and rational approaches to derive novel adeno-associated virus variants[J]. Mol Ther, 2014, 22(11):1900-1909. [34]Engel K, Bassermann F. The ubiquitin proteasome system and its implications for oncology[J]. Dtsch Med Wochenschr, 2013, 138(22):1178-1182. [35]Shen M, Schmitt S, Buac D, et al. Targeting the ubiquitin-proteasome system for cancer therapy[J]. Expert Opin Ther Targets, 2013, 17(9):1091-1108. [36]Mitchell AM, Samulski RJ. Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors[J]. J Virol, 2013, 87(23):13035-13041. [37]Duan D, Yue Y, Yan Z, et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus[J]. J Clin Invest, 2000, 105(11):1573-1587. [38]Yan Z, Zak R, Luxton GW, et al. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors[J]. J Virol, 2002, 76(5):2043-2053. [39]Jennings K, Miyamae T, Traister R, et al. Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo[J]. Mol Ther, 2005, 11(4):600-607. [40]Przystal JM, Umukoro E, Stoneham CA, et al. Proteasome inhibition in cancer is associated with enhanced tumor targeting by the adeno-associated virus/phage[J]. Mol Oncol, 2013, 7(1):55-66. [41]Neukirchen J, Meier A, Rohrbeck A, et al. The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells[J]. Cancer Gene Ther, 2007, 14(4):431-439. [42]Monahan PE, Lothrop CD, Sun J, et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models:a strategy for broad clinical application[J]. Mol Ther, 2010, 18(11):1907-1916. [43]Zhang FL, Jia SQ, Zheng SP, et al. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues[J]. Gene Ther, 2011, 18(2):128-134. [44]Wang LN, Wang Y, Lu Y, et al. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo[J]. J Integr Med, 2014, 12(1):20-34. [45]Ling C, Wang Y, Zhang Y, et al. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model[J]. Hum Gene Ther, 2014, 25(12):1023-1034. [46]Rampen A J, Jongen J L, van Heuvel I, et al. Bortezomib-induced polyneuropathy[J]. Neth J Med, 2013, 71(3):128-133. [47]Voortman J, Giaccone G. Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient:a case report[J]. BMC Cancer, 2006, (6):129. [48]Petrucci MT, Giraldo P, Corradini P, et al. A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma[J]. Br J Haematol, 2013, 160(5):649-659. [49]Zhong L, Zhao W, Wu J, et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis[J]. Mol Ther, 2007, 15(7):1323-1330. [50]Zhong L, Li B, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression[J]. Virology, 2008, 381(2):194-202. [51]Markusic DM, Herzog RW, Aslanidi GV, et al. High-efficiency transduction and correction of murine hemophilia B using AAV2 vectors devoid of multiple surface-exposed tyrosines[J]. Mol Ther, 2010, 18(12):2048-2056. [52]Qi YF, Li QH, Shenoy V, et al. Comparison of the transduction efficiency of tyrosine-mutant adeno-associated virus serotype vectors in kidney[J]. Clin Exp Pharmacol Physiol, 2013, 40(1):53-55. [53]Qiao C, Zhang W, Yuan Z, et al. Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle[J]. Hum Gene Ther, 2010, 21(10):1343-1348. [54]Klimczak RR, Koerber JT, Dalkara D, et al. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells[J]. PLoS One, 2009, 4(10):e7467. [55]Dalkara D, Kolstad KD, Guerin KI, et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa[J]. Mol Ther, 2011, 19(9):1602-1608. [56]Aslanidi GV, Rivers AE, Ortiz L, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors[J]. Vaccine, 2012, 30(26):3908-3917. [57]Aslanidi GV, Rivers AE, Ortiz L, et al. Optimization of the capsid of recombinant adeno-associated virus 2(AAV2)vectors:the final threshold?[J]. PLoS One, 2013, 8(3):e59142. [58]Zolotukhin I, Luo D, Gorbatyuk O, et al. Improved adeno-associated viral gene transfer to murine glioma[J]. J Genet Syndr Gene Ther, 2013, 4(133):12815. [59]Dai X, Han J, Qi Y, et al. AAV-mediated lysophosphatidylcholine acyltransferase 1(Lpcat1)gene replacement therapy rescues retinal degeneration in rd11 mice[J]. Invest Ophthalmol Vis Sci, 2014, 55(3):1724-1734. [60]Hakim CH, Yue Y, Shin JH, et al. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs[J]. Mol Ther Methods Clin Dev, 2014, 1:14002. [61]Mowat FM, Gornik KR, Dinculescu A, et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach[J]. Gene Ther, 2014, 21(1):96-105. [62]Qiao C, Yuan Z, Li J, et al. Single tyrosine mutation in AAV8 and AAV9 capsids is insufficient to enhance gene delivery to skeletal muscle and heart[J]. Human Gene Therapy, Part B:Methods, 2012, 23(1):29-37. [63]Ferrari FK, Samulski T, Shenk T, et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors[J]. J Virol, 1996, 70(5):3227-3234. [64]Qing K, Wang XS, Kube DM, et al. Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression[J]. Proc Natl Acad Sci USA, 1997, 94(20):10879-10884. [65]Mah C, Qing K, Khuntirat B, et al. Adeno-associated virus type 2-mediated gene transfer:role of epidermal growth factor receptor protein tyrosine kinase in transgene expression[J]. J Virol, 1998, 72(12):9835-9843. [66]Qing K, Hansen J, Weigel-Kelley KA, et al. Adeno-associated virus type 2-mediated gene transfer:role of cellular FKBP52 protein in transgene expression[J]. J Virol, 2001, 75(19):8968-8976. [67] Qing K, Li W, Zhong L, et al. Adeno-associated virus type 2-mediated gene transfer:role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo[J]. J Virol, 2003, 77(4):2741-2746. [68]Zhong L, Chen L, Li Y, et al. Self-complementary adeno-associated virus 2(AAV)-T cell protein tyrosine phosphatase vectors as helper viruses to improve transduction efficiency of conventional single-stranded AAV vectors in vitro and in vivo[J]. Mol Ther, 2004, 10(5):950-957. [69]Zhao W, Wu J, Zhong L, et al. Adeno-associated virus 2-mediated gene transfer:role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency[J]. Gene Ther, 2007, 14(6):545-550. [70]Jayandharan GR, Zhong L, Li B, et al. Strategies for improving the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo[J]. Gene Ther, 2008, 15(18):1287-1293. [71]Ma W, Li B, Ling C, et al. A simple method to increase the transduction efficiency of single-stranded adeno-associated virus vectors in vitro and in vivo[J]. Hum Gene Ther, 2011, 22(5):633-640. [72]McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus(scAAV)vectors promote efficient transduction independently of DNA synthesis[J]. Gene Ther, 2001, 8(16):1248-1254. [73]McCarty DM, Fu H, Monahan PE, et al. Adeno-associated virus terminal repeat(TR)mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo[J]. Gene Ther, 2003, 10(26):2112-2118. [74]Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo[J]. Gene Ther, 2003, 10(26):2105-2111. [75]Nathwani AC, Gray JT, Ng CY, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver[J]. Blood, 2006, 107(7):2653-2661. [76]Gao GP, Lu Y, Sun X, et al. High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes[J]. J Virol, 2006, 80(12):6192-6194. [77]Liu Y, Keefe K, Tang X, et al. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons:implications for axon regeneration[J]. PLoS One, 2014, 9(2):e87447. [78]McCarty DM. Self-complementary AAV vectors;advances and applications[J]. Mol Ther, 2008, 16(10):1648-1656. [79]Ding W, Yan Z, Zak R, et al. Second-strand genome conversion of adeno-associated virus type 2(AAV-2)and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia[J]. J Virol, 2003, 77(13):7361-7366. [80]Martino AT, Suzuki M, Markusic DM, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver[J]. Blood, 2011, 117(24):6459-6468. [81]Wu T, Topfer K, Lin S W, et al. Self-complementary AAVs induce more potent transgene product-specific immune responses compar-ed to a single-stranded genome[J]. Mol Ther, 2012, 20(3):572-579. [82]Mitchell AM, Li C, Samulski RJ. Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, increasing transduction in vitro and in vivo[J]. J Virol, 2013, 87(8):4571-4583. [83]Le HT, Yu QC, Wilson JM, et al. Utility of PEGylated recombinant adeno-associated viruses for gene transfer[J]. J Control Release, 2005, 108(1):161-177. [84]Ponnazhagan S, Mahendra G, Kumar S, et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands[J]. J Virol, 2002, 76(24):12900-12907. [85]Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B[J]. N Engl J Med, 2011, 365(25):2357-2365. |
[1] | 杨悦, 高郡茹, 杨柳. CRISPR技术在生物学与医学中的研究进展[J]. 生物技术通报, 2020, 36(3): 38-44. |
[2] | 张文君, 吴梦婷, 吕春艳, 王晴, 陈泳霖. 介孔二氧化硅在药物递送系统及其体内外研究进展[J]. 生物技术通报, 2019, 35(12): 159-168. |
[3] | 梁丽琴,阎婧,张鑫,郝泽婷,段江燕. CRISPR技术的发展及应用研究进展[J]. 生物技术通报, 2018, 34(5): 9-16. |
[4] | 李泰明, 许麒麟, 潘俊杰, 刘晓玫, 张春. AAV-ITR基因表达微载体在小鼠体内表达[J]. 生物技术通报, 2016, 32(5): 246-254. |
[5] | 郭兴荣,王小莉,袁雅红,涂汉军. PTEN mRNA编辑的间充质干细胞对神经胶质瘤U251细胞杀伤作用研究[J]. 生物技术通报, 2016, 32(4): 234-241. |
[6] | 占申标,唐明青,甘娜,曹苑青,李招发. rAAV规模化包装系统的研究进展[J]. 生物技术通报, 2015, 31(12): 63-69. |
[7] | 周培杰,高维强,方煜翔. 一种嵌合型调控元件在肿瘤靶向基因治疗中的应用[J]. 生物技术通报, 2015, 31(10): 255-262. |
[8] | 何峙峤, 毋丽娜, 朱晓辉, 马腾, 邱晓彦. Ig启动子有效启动肿瘤抑制基因的表达研究[J]. 生物技术通报, 2013, 0(11): 136-141. |
[9] | 尹帮旗;连文昌;惠二京;李招发;. AAV在基因治疗中的靶向修饰研究进展[J]. , 2012, 0(02): 33-40. |
[10] | 丁菲;徐宇虹;. 在体电脉冲基因导入技术研究进展[J]. , 2010, 0(10): 82-85. |
[11] | 翟亚峰;束刚;张志岐;王松波;江青艳;. 肠道特异性基因表达调控元件研究进展[J]. , 2010, 0(09): 32-37. |
[12] | 韦炜;郭冬薇;方煜翔;薛京伦;郭圣荣;田聆;. 溶瘤单纯疱疹病毒的叶酸-聚乙二醇化修饰及其生物学活性检测[J]. , 2010, 0(07): 201-207. |
[13] | 王巍杰;杨永强;徐长波;. 基因治疗导入载体的研究进展[J]. , 2010, 0(02): 38-41. |
[14] | 张小男;李玉霞;凌焱;梁龙;陈珊;陈惠鹏;. 基于四环素调控系统的病毒载体在基因治疗中的应用[J]. , 2009, 0(10): 49-54. |
[15] | 董培婷;熊正爱;李攀;王志刚;唐艳;. 超声微泡介导P53对宫颈癌HeLa细胞转染效率的试验研究[J]. , 2009, 0(09): 92-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||