[1] Tisch D, Schmoll M.Light regulation of metabolic pathways in fungi[J]. Appl Microbiol Biotechnol, 2010, 5:1259-1277. [2] Fuller KK, Loros JJ, Dunlap JC.Fungal photobiology:Visible light as a signal for stress, space and time[J]. Current Genetics, 2015, 61(3):275-288. [3] Liu Y, He Q, Cheng P.Photoreception in Neurospora:A tale of two white collar proteins[J]. Cellular and Molecular Life Sciences, 2003, 60(10):2131-2138. [4] Corrochano LM, Garre V.Photobiology in the Zygomycota:Multiple photoreceptor genes for complex responses to light[J]. Fungal Genet Biol, 2010, 47(11):893-899. [5] Nyilasi I, Acs K, Papp T, et al.Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides[J]. Folia Microbiologica, 2005, 50(5):415-420. [6] Ortiz-Alvarado R, Gonzalez-Hernandez GA, Torres-Guzman JC, et al.Transformation of Mucor circinelloides with autoreplicative vectors containing homologous and heterologous ars elements and the dominant cbx(r)carboxine-resistance gene[J]. Current Microbiology, 2006, 52(3):178-181. [7] Ballario P, Vittorioso P, Magrelli A, et al.White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein[J]. EMBO Journal, 1996, 15(7):1650-1657. [8] Linden H, Macino G.White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa[J]. EMBO Journal, 1997, 16(1):98-109. [9] Linden H, Ballario P, Macino G.Blue light regulation in Neurospora crassa[J]. Fungal Genet Biol, 1997, 22(3):141-150. [10] Smith KM, Sancar G, Dekhang R, et al.Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex[J]. Eukaryot Cell, 2010, 9(10):1549-1556. [11] Casas-Flores S, Rios-Momberg M, Bibbins M, et al.Blr-1 and blr-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride[J]. Microbiology, 2004, 150(Pt 11):3561-3569. [12] Terashima K, Yuki K, Muraguchi H, et al.The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light[J]. Genetics, 2005, 171(1):101-108. [13] Kuratani M, Tanaka K, Terashima K, et al.The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain[J]. Fungal Genet Biol, 2010, 47(2):152-158. [14] Tisch D, Schmoll M.Targets of light signalling inTrichoderma reesei[J]. BMC Genomics, 2013, 14(1):1-18. [15] Campuzano V, Galland P, Senger H, et al.Isolation and characterization of phototropism mutants of Phycomyces insensitive to ultraviolet light[J]. Current Genetics, 1994, 26(1):49-53. [16] Sanz C, Rodriguez-Romero J, Idnurm A, et al.Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism[J]. Proc Natl Acad Sci USA, 2009, 106(17):7095-7100. [17] Idnurm A, Rodriguez-Romero J, Corrochano LM, et al.The Phycomyces mada gene encodes a blue-light photoreceptor for phototropism and other light responses[J]. Proc Natl Acad Sci USA, 2006, 103(12):4546-4551. [18] Silva F, Torres-Martinez S, Garre V.Distinct white collar-1 genes control specific light responses in Mucor circinelloides[J]. Mol Microbiol, 2006, 61(4):1023-1037. [19] Ma LJ, Ibrahim AS, Skory C, et al.Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication[J]. PLoS Genet, 2009, 5(7):e1000549. [20] Navarro E, Penaranda A, Hansberg W, et al.A white collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides[J]. Fungal Genet Biol, 2013, 52(3):42-52. [21] Lin C, Todo T.The cryptochromes[J]. Genome Biol, 2005, 6(5):220. [22] Mei Q, Dvornyk V.Evolutionary history of the photolyase/cryptochrome superfamily in eukaryotes[J]. PLoS One, 2015, 10(9):e0135940. [23] Froehlich AC, Chen CH, Belden WJ, et al.Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa[J]. Eukaryot Cell, 2010, 9(5):738-750. [24] Guzman-Moreno J, Flores-Martinez A, Brieba LG, et al.The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity[J]. PLoS One, 2014, 9(6):e100625. [25] Castrillo M, Avalos J.The flavoproteins CryD and VvdA cooperate with the white collar protein wcoa in the control of photocarotenogenesis in Fusarium fujikuroi[J]. PLoS One, 2015, 10(3):e0119785. [26] Tagua VG, Pausch M, et al.Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution[J]. Proc Natl Acad Sci USA, 2015, 112(49):15130-15135. [27] Chaves I, Pokorny R, Byrdin M, et al.The cryptochromes:Blue light photoreceptors in plants and animals[J]. Annu Rev Plant Biol, 2011, 62:335-364. [28] Selby CP, Sancar A.A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity[J]. Proc Natl Acad Sci USA, 2006, 103(47):17696-17700. [29] Pokorny R, Klar T, et al.Recognition and repair of uv lesions in loop structures of duplex DNA by dash-type cryptochrome[J]. Proc Natl Acad Sci USA, 2008, 105(52):21023-21027. [30] Huang Y, Baxter R, Smith BS, et al.Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity[J]. Proc Natl Acad Sci USA, 2006, 103(47):17701-17706. [31] Galland P.Ultraviolet killing and photoreactivation of Phycomyces spores[J]. Microbiological Research, 1996, 151(1):9-17. [32] Shimura M, Ito Y, Ishii C, et al.Characterization of a Neurospora crassa photolyase-deficient mutant generated by repeat induced point mutation of the phr gene[J]. Fungal Genet Biol, 1999, 28(1):12-20. [33] Galland P.Phototropism of the Phycomyces sporangiophore:A comparison with higher plants[J]. Photochem Photobiol, 1990, 52(1):233-248. [34] Cerda-Olmedo E.Phycomyces and the biology of light and color[J]. FEMS Microbiol Rev, 2001, 25(5):503-512. [35] Galland P, Lipson ED.Blue-light reception in Phycomyces phototropism:Evidence for two photosystems operating in low- and high-intensity ranges[J]. Proc Natl Acad Sci USA, 1987, 84(1):104-108. [36] Martin-Rojas V, Greiner H, Wagner T, et al.Specific tropism caused by ultraviolet c radiation in Phycomyces[J]. Planta, 1995, 197(1):63-68. [37] Galland P.Reception of far-ultraviolet light in Phycomyces:Antagonistic interaction with blue and red light[J]. Planta, 1998, 205(2):269-276. [38] Chen XY, Xiong YQ, Lipson ED.Action spectrum for subliminal light control of adaptation in Phycomyces phototropism[J]. Photochem Photobiol, 1993, 58(3):425-431. [39] Galland P, Amon S, Senger H, et al.Blue light reception in Phycomyces:Red light sensitization in madC mutants[J]. Botanica Acta, 1995, 108(4):344-350. [40] Polaino S, Villalobos-Escobedo JM, et al.A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi[J]. Sci Rep, 2017, 7:44790. [41] Corrochano LM, Cerdá-Olmedo E.Photomorphogenesis in behavioural and colour mutants of Phycomyces[J]. Journal of Photochemistry and Photobiology B, 1990, 6(3):325-335. [42] Page RM.Light and the asexual reproduction of Pilobolus[J]. Science, 1962, 138(3546):1238-1245. [43] Kubo H, Mihara H.Phototropic fluence-response curves for Pilobolus crystallinus sporangiophore[J]. Planta, 1988, 174(2):174-179. [44] Kubo H, Mihara H.Effects of microbeam light on growth and phototropism of Pilobolus crystallinus sporangiophores[J]. Mycoscience, 1996, 37(1):31-34. [45] Ruiz-Hidalgo MJ, Benito EP, et al.The phytoene dehydrogenase gene of Phycomyces:Regulation of its expression by blue light and vitamin A[J]. Mol Gen Genet, 1997, 253(6):734-744. [46] Velayos A, Blasco JL, Alvarez MI, et al.Blue-light regulation of phytoene dehydrogenase(carB)gene expression in Mucor circinelloides[J]. Planta, 2000, 210(6):938-946. [47] Velayos A, Eslava AP, Iturriaga EA.A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides[J]. Eur J Biochem, 2000, 267(17):5509-5519. [48] Arrach N, Fernandez-Martin R, Cerda-Olmedo E, et al.A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces[J]. Proc Natl Acad Sci USA, 2001, 98(4):1687-1692. [49] Rodriguez-Saiz M, et al.Blakeslea trispora genes for carotene biosynthesis[J]. Appl Environ Microbiol, 2004, 70(9):5589-5594. [50] Bejarano ER, Avalos J, Lipson ED, et al.Photoinduced accumula-tion of carotene in Phycomyces[J]. Planta, 1991, 183(1):1-9. [51] Bergman K, et al.Mutants of Phycomyces with abnormal phototropism[J]. Mol Gen Genet, 1973, 123(1):1-16. [52] Quiles-Rosillo MD, Ruiz-Vazquez RM, Torres-Martinez S, et al.Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora[J]. Fungal Genet Biol, 2005, 42(2):141-153. [53] Navarro E, et al.Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides[J]. Eur J Biochem, 2000, 267(3):800-807. [54] Silva F, Navarro E, Penaranda A, et al.A RING-finger protein reg-ulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator[J]. Mol Microbiol, 2008, 70(4):1026-1036. [55] Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, et al.A negative regulator of light-inducible carotenogenesis in Mucor circinelloides[J]. Mol Genet Genomics, 2001, 3:463-470. [56] Corrochano LM, Cerda-Olmedo E.Sex, light and carotenes:The development of Phycomyces[J]. Trends Genet, 1992, 8(8):268-274. [57] Kubo H, Mihara H.Effects of light and temperature on sporangiophore initiation in Pilobolus crystallinus(wiggers)tode[J]. Planta, 1986, 168(3):337-339. [58] Quiles-Rosillo MD, Torres-Martinez S, Garre V.CigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor CrgA[J]. Fungal Genet Biol, 2003, 38(1):122-132. [59] Nicolas FE, Calo S, et al.A RING-finger photocarotenogenic repre-ssor involved in asexual sporulation in Mucor circinelloides[J]. FEMS Microbiol Lett, 2008, 280(1):81-88. [60] Yamazaki Y, Kataoka H, Miyazakl A, et al.Action spectra for photoinhibition of sexual development in Phycomyces blakesleeanus[J]. Photochem Photobiol, 1996, 2:389-392. [61] Lee SC, Heitman J.Sex in the mucoralean fungi[J]. Mycoses, 2014, 57(Suppl 3):18-24. [62] Tagua VG, Medina HR, Martin-Dominguez R, et al.A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus[J]. Fungal Genet Biol, 2012, 49(5):398-404. [63] Shakya VPS, Idnurm A.The inhibition of mating in Phycomyces blakesleeanus by light is dependent on the MADA-MADB complex that acts in a sex-specific manner[J]. Fungal Genet Biol, 2017, 101:20-30. |