生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 49-61.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0269
李梦颖1,2(), 周华3, 丁玉春2,4,5,6, 刘作华2,4,5, 孙静2,4,5,6(), 李周权1()
收稿日期:
2020-03-12
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
李梦颖,女,硕士研究生,研究方向:单胃动物营养;E-mail: 基金资助:
LI Meng-ying1,2(), ZHOU Hua3, DING Yu-chun2,4,5,6, LIU Zuo-hua2,4,5, SUN Jing2,4,5,6(), LI Zhou-quan1()
Received:
2020-03-12
Published:
2020-10-26
Online:
2020-11-02
摘要:
旨在研究肠道微生物对仔猪肝脏、空肠内容物和粪便胆汁酸谱及仔猪胆汁酸代谢的影响。随机选择无菌剖腹产所得仔猪11头,分为无菌猪组(GF组,5头)和粪菌移植组(FMT组,6头)。GF组始终保持无菌状态,FMT组在7日龄时口服植入健康猪源粪菌。42日龄时,采集肝脏组织、空肠内容物、新鲜粪便用于胆汁酸定量,肝脏组织与空肠组织进行胆汁酸代谢相关基因定量。结果表明:相比于GF组,FMT组仔猪粪便中的总胆汁酸水平显著高于GF组(P<0.01);FMT仔猪空肠内容物和粪便中次级胆汁酸占总胆汁酸的比例显著高于GF仔猪(P<0.05),肝脏中也发现同样的趋势(P<0.05);相比于GF仔猪,FMT仔猪肝脏中CYP7A1、BAT、FXR等与胆汁酸合成、结合与转运相关基因的下调,肠道中转运蛋白MRP2基因表达上调。由此可见,肠道微生物的转入与定植不仅能够增加仔猪胆汁酸的排泄,提高次级胆汁酸占比,改变仔猪胆汁酸谱,而且还影响胆汁酸的肝肠循环过程。
李梦颖, 周华, 丁玉春, 刘作华, 孙静, 李周权. 肠道微生物对仔猪胆汁酸谱及胆汁酸代谢的影响[J]. 生物技术通报, 2020, 36(10): 49-61.
LI Meng-ying, ZHOU Hua, DING Yu-chun, LIU Zuo-hua, SUN Jing, LI Zhou-quan. Effects of Gut Microbiota on Bile Acid Profile and Bile Acid Metabolism in Piglets[J]. Biotechnology Bulletin, 2020, 36(10): 49-61.
简称 | 英文名 | 中文名 | 结合/游离 | 初级/次级 |
---|---|---|---|---|
TDCA | taurodeoxycholate | 牛磺脱氧胆酸 | T | S |
TCA | taurocholic acid | 牛磺胆酸 | T | P |
TCDCA | taurochenodeoxycholate | 牛磺鹅脱氧胆酸 | T | P |
TLCA | taurolithocholate | 牛磺石胆酸 | T | S |
TUDCA | tauroursodeoxycholic acid | 牛磺熊脱氧胆酸 | T | P |
THDCA | taurohyodeoxycholic acid | 牛磺猪脱氧胆酸 | T | S |
TαMCA | tauro α-muricholate | 牛磺α鼠胆酸 | T | S |
TβMCA | tauro β-muricholate | 牛磺β鼠胆酸 | T | S |
TωMCA | tauro ω-muricholate | 牛磺ω鼠胆酸 | T | S |
THCA | taurohyocholate | 牛磺猪胆酸 | T | P |
GCA | glycocholic acid | 甘氨胆酸 | G | P |
GCDCA | glycochenodeoxycholate | 甘氨鹅脱氧胆酸 | G | P |
GLCA | glycolithocholate | 甘氨石胆酸 | G | S |
GUDCA | glycoursodeoxycholic acid | 甘氨熊脱氧胆酸 | G | S |
GHDCA | glycohyodeoxycholate | 甘氨猪脱氧胆酸 | G | P |
GHCA | glycohyocholate | 甘氨猪胆酸 | G | P |
CDCA | chenodeoxycholic acid | 鹅脱氧胆酸 | U | P |
isoLCA | isolithocholic acid | 3β-羟基石胆酸 | U | S |
6-ketoLCA | 6-ketolithocholic acid | 6酮基石胆酸 | U | S |
7-ketoLCA | 7-ketolithocholic acid | 7酮基石胆酸 | U | S |
12-ketoLCA | 12-ketolithocholic acid | 12酮基石胆酸 | U | S |
6,7-diketoLCA | 6,7-diketolithocholic acid | 6,7-二酮石胆酸 | U | S |
7,12-diketoLCA | 7,12-diketolithocholic acid | 7,12-二酮石胆酸 | U | S |
dehydroLCA | dehydrolithocholic acid | 去氢石胆酸 | U | S |
UDCA | ursodeoxycholic acid | 熊脱氧胆酸 | U | S |
muroCA | murocholic acid | 鼠胆酸 | U | S |
αMCA | α-muricholic acid | α鼠胆酸 | U | S |
βMCA | β-muricholic acid | β鼠胆酸 | U | S |
ωMCA | ω-muricholic acid | ω鼠胆酸 | U | S |
HCA | γ-muricholic acid\hyocholic acid | 猪胆酸 | U | P |
12-DHCA | 12-dehydrocholic acid | 12-去氢胆酸 | U | S |
3-DHCA | 3-dehydrocholic acid | 3-去氢胆酸 | U | S |
apoCA | apocholic acid | 原胆酸 | U | S |
NorDCA | 23-nordeoxycholic acid | 23-脱甲脱氧胆酸 | U | S |
CDCA-24G | Chenodeoxycholic acid 24-Acyl-β-D-glucuronide | 鹅去氧胆酸-24-酰基-β-D-葡萄糖醛酸 | U | P |
UCA | ursocholic acid | 熊果胆酸 | U | S |
βUDCA | 3β-Ursodeoxycholic Acid | 3β-熊脱氧胆酸 | U | S |
βHDCA | β-Hyodeoxycholic Acid | β-猪脱氧胆酸 | U | S |
βCA | 3β-Cholic Acid | 3β-胆酸 | U | S |
ACA | Allocholic acid | 别胆酸 | U | S |
NorCA | Nor Cholic acid | 正胆酸 | U | S |
CDCA-3G | Chenodeoxycholic acid-3-β-D-glucuronide | 鹅去氧胆酸-3-β-D-葡萄糖醛酸 | U | P |
βUCA | β-ursocholic acid | β-熊果胆酸 | U | S |
βCDCA | β-chenodeoxycholic acid | β-鹅脱氧胆酸 | U | P |
βDCA | β-deoxycholic acid | β-脱氧胆酸 | U | S |
7-DHCA | 7-dehydrocholic acid | 7-去氢胆酸 | U | S |
DCA | deoxycholic acid | 脱氧胆酸 | U | S |
CA | cholic acid | 胆酸 | U | P |
LCA | lithocholic acid | 石胆酸 | U | S |
HDCA | α-hyodeoxycholic acid | 猪脱氧胆酸 | U | P |
表1 文中涉及到的胆汁酸名称
简称 | 英文名 | 中文名 | 结合/游离 | 初级/次级 |
---|---|---|---|---|
TDCA | taurodeoxycholate | 牛磺脱氧胆酸 | T | S |
TCA | taurocholic acid | 牛磺胆酸 | T | P |
TCDCA | taurochenodeoxycholate | 牛磺鹅脱氧胆酸 | T | P |
TLCA | taurolithocholate | 牛磺石胆酸 | T | S |
TUDCA | tauroursodeoxycholic acid | 牛磺熊脱氧胆酸 | T | P |
THDCA | taurohyodeoxycholic acid | 牛磺猪脱氧胆酸 | T | S |
TαMCA | tauro α-muricholate | 牛磺α鼠胆酸 | T | S |
TβMCA | tauro β-muricholate | 牛磺β鼠胆酸 | T | S |
TωMCA | tauro ω-muricholate | 牛磺ω鼠胆酸 | T | S |
THCA | taurohyocholate | 牛磺猪胆酸 | T | P |
GCA | glycocholic acid | 甘氨胆酸 | G | P |
GCDCA | glycochenodeoxycholate | 甘氨鹅脱氧胆酸 | G | P |
GLCA | glycolithocholate | 甘氨石胆酸 | G | S |
GUDCA | glycoursodeoxycholic acid | 甘氨熊脱氧胆酸 | G | S |
GHDCA | glycohyodeoxycholate | 甘氨猪脱氧胆酸 | G | P |
GHCA | glycohyocholate | 甘氨猪胆酸 | G | P |
CDCA | chenodeoxycholic acid | 鹅脱氧胆酸 | U | P |
isoLCA | isolithocholic acid | 3β-羟基石胆酸 | U | S |
6-ketoLCA | 6-ketolithocholic acid | 6酮基石胆酸 | U | S |
7-ketoLCA | 7-ketolithocholic acid | 7酮基石胆酸 | U | S |
12-ketoLCA | 12-ketolithocholic acid | 12酮基石胆酸 | U | S |
6,7-diketoLCA | 6,7-diketolithocholic acid | 6,7-二酮石胆酸 | U | S |
7,12-diketoLCA | 7,12-diketolithocholic acid | 7,12-二酮石胆酸 | U | S |
dehydroLCA | dehydrolithocholic acid | 去氢石胆酸 | U | S |
UDCA | ursodeoxycholic acid | 熊脱氧胆酸 | U | S |
muroCA | murocholic acid | 鼠胆酸 | U | S |
αMCA | α-muricholic acid | α鼠胆酸 | U | S |
βMCA | β-muricholic acid | β鼠胆酸 | U | S |
ωMCA | ω-muricholic acid | ω鼠胆酸 | U | S |
HCA | γ-muricholic acid\hyocholic acid | 猪胆酸 | U | P |
12-DHCA | 12-dehydrocholic acid | 12-去氢胆酸 | U | S |
3-DHCA | 3-dehydrocholic acid | 3-去氢胆酸 | U | S |
apoCA | apocholic acid | 原胆酸 | U | S |
NorDCA | 23-nordeoxycholic acid | 23-脱甲脱氧胆酸 | U | S |
CDCA-24G | Chenodeoxycholic acid 24-Acyl-β-D-glucuronide | 鹅去氧胆酸-24-酰基-β-D-葡萄糖醛酸 | U | P |
UCA | ursocholic acid | 熊果胆酸 | U | S |
βUDCA | 3β-Ursodeoxycholic Acid | 3β-熊脱氧胆酸 | U | S |
βHDCA | β-Hyodeoxycholic Acid | β-猪脱氧胆酸 | U | S |
βCA | 3β-Cholic Acid | 3β-胆酸 | U | S |
ACA | Allocholic acid | 别胆酸 | U | S |
NorCA | Nor Cholic acid | 正胆酸 | U | S |
CDCA-3G | Chenodeoxycholic acid-3-β-D-glucuronide | 鹅去氧胆酸-3-β-D-葡萄糖醛酸 | U | P |
βUCA | β-ursocholic acid | β-熊果胆酸 | U | S |
βCDCA | β-chenodeoxycholic acid | β-鹅脱氧胆酸 | U | P |
βDCA | β-deoxycholic acid | β-脱氧胆酸 | U | S |
7-DHCA | 7-dehydrocholic acid | 7-去氢胆酸 | U | S |
DCA | deoxycholic acid | 脱氧胆酸 | U | S |
CA | cholic acid | 胆酸 | U | P |
LCA | lithocholic acid | 石胆酸 | U | S |
HDCA | α-hyodeoxycholic acid | 猪脱氧胆酸 | U | P |
饲粮组成/% | 含量 | 营养水平 | |
---|---|---|---|
普通玉米,CP 7.8% | 14.10 | CP,% | 19.00 |
膨化玉米,CP 7.8% | 10.00 | DE,Kcal/kg | 3 622.00 |
去皮豆粕,CP 47.13% | 13.65 | NE,Kcal/kg | 2 645.00 |
膨化大豆,CP 35.5% | 7.00 | SID Lys,% | 1.23 |
大豆浓缩蛋白,CP 65.2% | 5.00 | SID Met,% | 0.36 |
乳清粉,CP 3.26% | 5.00 | SID Thr,% | 0.73 |
鱼粉,65.2% | 3.00 | SID Trp,% | 0.20 |
血浆蛋白粉,CP 76.66% | 3.00 | Ca,% | 0.70 |
葡萄糖 | 2.00 | P,% | 0.60 |
大豆油 | 1.40 | AP,% | 0.45 |
玉米淀粉 | 29.70 | ||
纤维 | 3.00 | ||
石灰石 | 0.45 | ||
磷酸氢钙 | 1.25 | ||
L-Lys(78%) | 0.29 | ||
DL-Met(99%) | 0.12 | ||
L-Thr(98.5%) | 0.13 | ||
L-Trp(98%) | 0.01 | ||
维生素-矿物质预混料 | 0.50 | ||
氯化钠 | 0.25 | ||
氯化胆碱 | 0.15 | ||
总计 | 100.00 |
表2 基础日粮组成及营养成分
饲粮组成/% | 含量 | 营养水平 | |
---|---|---|---|
普通玉米,CP 7.8% | 14.10 | CP,% | 19.00 |
膨化玉米,CP 7.8% | 10.00 | DE,Kcal/kg | 3 622.00 |
去皮豆粕,CP 47.13% | 13.65 | NE,Kcal/kg | 2 645.00 |
膨化大豆,CP 35.5% | 7.00 | SID Lys,% | 1.23 |
大豆浓缩蛋白,CP 65.2% | 5.00 | SID Met,% | 0.36 |
乳清粉,CP 3.26% | 5.00 | SID Thr,% | 0.73 |
鱼粉,65.2% | 3.00 | SID Trp,% | 0.20 |
血浆蛋白粉,CP 76.66% | 3.00 | Ca,% | 0.70 |
葡萄糖 | 2.00 | P,% | 0.60 |
大豆油 | 1.40 | AP,% | 0.45 |
玉米淀粉 | 29.70 | ||
纤维 | 3.00 | ||
石灰石 | 0.45 | ||
磷酸氢钙 | 1.25 | ||
L-Lys(78%) | 0.29 | ||
DL-Met(99%) | 0.12 | ||
L-Thr(98.5%) | 0.13 | ||
L-Trp(98%) | 0.01 | ||
维生素-矿物质预混料 | 0.50 | ||
氯化钠 | 0.25 | ||
氯化胆碱 | 0.15 | ||
总计 | 100.00 |
基因 | 上游引物(5'-3') | 下游引物(5'-3') | 产物长度/bp | 参考文献 |
---|---|---|---|---|
GAPDH | CCAGGGCTGCTTTTAACTCTG | GTGGGTGGAATCATACTGGAACAT | 104 | [ |
CYP7A1 | GAAAGAGAGACCACATCTCGG | GAATGGTGTTGGCTTGCGAT | 123 | [ |
CYP4A21 | GATCCAGGAACTGCATTGGGA | CACAATTCCTTGAATAGGAACGGG | 128 | |
CYP27A1 | ACTGAAGACCGCGATGAAAC | CAAAGGCGAATCAGGAAGGG | 106 | [ |
FXR | TATGAACTCAGGCGAATGCCTGCT | ATCCAGATGCTCTGTCTCCGCAAA | 154 | [ |
LRH1 | GGTACCACTATGGGCTCCTCAC | TCGGCCCTTACCGCTTCT | 193 | [ |
OATP1 | TGCTTAAAACTCCCACCCCT | GTTTGCTTCATTCACGGCTT | 120 | [ |
BESP | CGCAGCGTGAAGAAATGTGG | AAAACCGAAACAGTTGAAAGAGGC | 136 | |
FGFR4 | GCTCAGAGGTGGAGGTCCTA | GCCTGCCAGACAGGTGTATT | 74 | [ |
BAT | GGCTGATGATCCGAGAAGGG | ATGCCCCCAAACAAGTCGAT | 94 | [ |
KLβ | GCACCGAGTGGAAGGAGT | TTGCCAGTAGGAAGGATTG | 150 | [ |
MRP2 | GAACAGGTTTGCTGGCGATATT | GCCAGGAGCGCAAAGACA | 65 | [ |
SHP | ACCATTCTCTTCAACCCTGATGT | GCTGCGAGGAGAACACGAG | 149 | |
HNF4α1 | GCCTCTCCAAAACCCTGGTC | CTGATGGGGATGTGTCATTGC | 126 | |
BACS | CTGGCTCCCTGCCTATGCT | GAACGTGCTTGTGGTCTCCAA | 70 | [ |
NTCP | TGTCATCAAGGGAGGAACGA | CGAGCATTGAGGCGGAAAAG | 189 | |
ASBT | AAGTTCCTGGGGCACGTAAA | CTCCTGGACAGCATCCCATT | 161 | [ |
OSTα | TGTACAAGAACACTCGCTGC | GAACACACACACTATCGTGGG | 80 | [ |
FGF19 | AAGATGCAAGGGCAGACTCA | AGATGGTGTTTCTTGGACCAGT | 101 | |
IBABP | GCAAGGAGTGCGACATAGAGAC | TGGTGGTAGTTGGGGCTGTT | 100 | |
MRP3 | TGGACAAAGGGACAATAGCTGAGT | TGGCCATCCCGTAGAAGATG | 78 | [ |
TGR5 | TGCTGTCCCTCATCTCATTGG | TGTGTAGCGATGATCACCCAG | 80 | [ |
表3 扩增基因的引物信息
基因 | 上游引物(5'-3') | 下游引物(5'-3') | 产物长度/bp | 参考文献 |
---|---|---|---|---|
GAPDH | CCAGGGCTGCTTTTAACTCTG | GTGGGTGGAATCATACTGGAACAT | 104 | [ |
CYP7A1 | GAAAGAGAGACCACATCTCGG | GAATGGTGTTGGCTTGCGAT | 123 | [ |
CYP4A21 | GATCCAGGAACTGCATTGGGA | CACAATTCCTTGAATAGGAACGGG | 128 | |
CYP27A1 | ACTGAAGACCGCGATGAAAC | CAAAGGCGAATCAGGAAGGG | 106 | [ |
FXR | TATGAACTCAGGCGAATGCCTGCT | ATCCAGATGCTCTGTCTCCGCAAA | 154 | [ |
LRH1 | GGTACCACTATGGGCTCCTCAC | TCGGCCCTTACCGCTTCT | 193 | [ |
OATP1 | TGCTTAAAACTCCCACCCCT | GTTTGCTTCATTCACGGCTT | 120 | [ |
BESP | CGCAGCGTGAAGAAATGTGG | AAAACCGAAACAGTTGAAAGAGGC | 136 | |
FGFR4 | GCTCAGAGGTGGAGGTCCTA | GCCTGCCAGACAGGTGTATT | 74 | [ |
BAT | GGCTGATGATCCGAGAAGGG | ATGCCCCCAAACAAGTCGAT | 94 | [ |
KLβ | GCACCGAGTGGAAGGAGT | TTGCCAGTAGGAAGGATTG | 150 | [ |
MRP2 | GAACAGGTTTGCTGGCGATATT | GCCAGGAGCGCAAAGACA | 65 | [ |
SHP | ACCATTCTCTTCAACCCTGATGT | GCTGCGAGGAGAACACGAG | 149 | |
HNF4α1 | GCCTCTCCAAAACCCTGGTC | CTGATGGGGATGTGTCATTGC | 126 | |
BACS | CTGGCTCCCTGCCTATGCT | GAACGTGCTTGTGGTCTCCAA | 70 | [ |
NTCP | TGTCATCAAGGGAGGAACGA | CGAGCATTGAGGCGGAAAAG | 189 | |
ASBT | AAGTTCCTGGGGCACGTAAA | CTCCTGGACAGCATCCCATT | 161 | [ |
OSTα | TGTACAAGAACACTCGCTGC | GAACACACACACTATCGTGGG | 80 | [ |
FGF19 | AAGATGCAAGGGCAGACTCA | AGATGGTGTTTCTTGGACCAGT | 101 | |
IBABP | GCAAGGAGTGCGACATAGAGAC | TGGTGGTAGTTGGGGCTGTT | 100 | |
MRP3 | TGGACAAAGGGACAATAGCTGAGT | TGGCCATCCCGTAGAAGATG | 78 | [ |
TGR5 | TGCTGTCCCTCATCTCATTGG | TGTGTAGCGATGATCACCCAG | 80 | [ |
基因 | 表达量(GF) | 表达量(FMT) | 相对表达量(F) | P值 |
---|---|---|---|---|
CYP7A1(肝脏) | 6.22±2.29 | 2.29±1.05 | 0.37±0.17 | 0.011(*) |
CYP4A21(肝脏) | 1.7±0.62 | 2.07±0.52 | 1.22±0.31 | 0.359 |
CYP27A1(肝脏) | 2.82±1.02 | 1.67±0.9 | 0.59±0.32 | 0.106 |
FXR(肝脏) | 2.99±1.44 | 1.44±0.51 | 0.48±0.17 | 0.001(**) |
LRH1(肝脏) | 1.78±0.49 | 2.44±1.39 | 1.37±0.78 | 0.385 |
OATP1(肝脏) | 1.94±1.4 | 9.71±9.27 | 4.99±4.77 | 0.128 |
BSEP(肝脏) | 1.95±0.32 | 3.58±2.24 | 1.84±1.15 | 0.187 |
FGFR4(肝脏) | 5.02±2.11 | 2.11±1.02 | 0.42±0.20 | 0.003(**) |
BAT(肝脏) | 3.88±1.67 | 1.67±0.59 | 0.43±0.15 | 0.003(**) |
KLβ(肝脏) | 9.19±2.34 | 2.34±1.19 | 0.25±0.13 | 0.001(**) |
MRP2(肝脏) | 2.60±1.48 | 1.48±0.53 | 0.57±0.20 | 0.013(*) |
SHP(肝脏) | 2.40±0.37 | 2.35±0.89 | 0.97±0.37 | 0.909 |
HNF4α1(肝脏) | 2.40±0.53 | 1.90±0.89 | 0.79±0.37 | 0.343 |
BACS(肝脏) | 2.07±0.27 | 1.77±0.76 | 0.86±0.37 | 0.476 |
NTCP(肝脏) | 2.36±0.8 | 2.86±1.22 | 1.21±0.52 | 0.499 |
ASBT(肝脏) | 1.81±0.81 | 4.82±3.25 | 2.66±1.79 | 0.122 |
OSTα(肝脏) | 2.17±1.4 | 4.43±2.36 | 2.05±1.09 | 0.158 |
TGR5(肝脏) | 2.57±1.47 | 1.47±0.24 | 0.57±0.09 | 0.003(**) |
FGF19(空肠) | 2.66±1.74 | 3.46±1.19 | 1.30±0.45 | 0.433 |
IBABP(空肠) | 34.02±32.18 | 25.42±34.4 | 0.75±1.01 | 0.71 |
MRP3(空肠) | 3.48±1.34 | 5.45±2.77 | 1.56±0.80 | 0.222 |
ASBT(空肠) | 3.97±1.73 | 9.45±4.41 | 2.38±1.11 | 0.067 |
FXR(空肠) | 3.75±1.66 | 7.69±5.18 | 2.05±1.38 | 0.174 |
MRP2(空肠) | 1.28±0.21 | 2.38±0.48 | 1.86±0.37 | 0.025(*) |
TGR5(空肠) | 4.65±2.61 | 5.83±3.23 | 1.25±0.69 | 0.611 |
表5 仔猪肝脏与空肠组织中胆汁酸代谢相关基因表达水平
基因 | 表达量(GF) | 表达量(FMT) | 相对表达量(F) | P值 |
---|---|---|---|---|
CYP7A1(肝脏) | 6.22±2.29 | 2.29±1.05 | 0.37±0.17 | 0.011(*) |
CYP4A21(肝脏) | 1.7±0.62 | 2.07±0.52 | 1.22±0.31 | 0.359 |
CYP27A1(肝脏) | 2.82±1.02 | 1.67±0.9 | 0.59±0.32 | 0.106 |
FXR(肝脏) | 2.99±1.44 | 1.44±0.51 | 0.48±0.17 | 0.001(**) |
LRH1(肝脏) | 1.78±0.49 | 2.44±1.39 | 1.37±0.78 | 0.385 |
OATP1(肝脏) | 1.94±1.4 | 9.71±9.27 | 4.99±4.77 | 0.128 |
BSEP(肝脏) | 1.95±0.32 | 3.58±2.24 | 1.84±1.15 | 0.187 |
FGFR4(肝脏) | 5.02±2.11 | 2.11±1.02 | 0.42±0.20 | 0.003(**) |
BAT(肝脏) | 3.88±1.67 | 1.67±0.59 | 0.43±0.15 | 0.003(**) |
KLβ(肝脏) | 9.19±2.34 | 2.34±1.19 | 0.25±0.13 | 0.001(**) |
MRP2(肝脏) | 2.60±1.48 | 1.48±0.53 | 0.57±0.20 | 0.013(*) |
SHP(肝脏) | 2.40±0.37 | 2.35±0.89 | 0.97±0.37 | 0.909 |
HNF4α1(肝脏) | 2.40±0.53 | 1.90±0.89 | 0.79±0.37 | 0.343 |
BACS(肝脏) | 2.07±0.27 | 1.77±0.76 | 0.86±0.37 | 0.476 |
NTCP(肝脏) | 2.36±0.8 | 2.86±1.22 | 1.21±0.52 | 0.499 |
ASBT(肝脏) | 1.81±0.81 | 4.82±3.25 | 2.66±1.79 | 0.122 |
OSTα(肝脏) | 2.17±1.4 | 4.43±2.36 | 2.05±1.09 | 0.158 |
TGR5(肝脏) | 2.57±1.47 | 1.47±0.24 | 0.57±0.09 | 0.003(**) |
FGF19(空肠) | 2.66±1.74 | 3.46±1.19 | 1.30±0.45 | 0.433 |
IBABP(空肠) | 34.02±32.18 | 25.42±34.4 | 0.75±1.01 | 0.71 |
MRP3(空肠) | 3.48±1.34 | 5.45±2.77 | 1.56±0.80 | 0.222 |
ASBT(空肠) | 3.97±1.73 | 9.45±4.41 | 2.38±1.11 | 0.067 |
FXR(空肠) | 3.75±1.66 | 7.69±5.18 | 2.05±1.38 | 0.174 |
MRP2(空肠) | 1.28±0.21 | 2.38±0.48 | 1.86±0.37 | 0.025(*) |
TGR5(空肠) | 4.65±2.61 | 5.83±3.23 | 1.25±0.69 | 0.611 |
[1] | Molinaro A, Wahlström A, Marschall H. Role of bile acids in metabolic control[J]. Trends in Endocrinology and Metabolism, 2018,29(1):31-41. |
[2] |
Ge X, Pan J, Liu Y, et al. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility[J]. Current Pharmaceutical Biotechnology, 2018,19(3):190-195.
URL pmid: 29804531 |
[3] |
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacological Reviews, 2014,66(4):948-983.
URL pmid: 25073467 |
[4] | Russell DW. The enzymes, regulation, and genetics of bile acid synjournal[J]. Ann Rev Biochem, 2003,72(1):137-174. |
[5] | Hofmann AF, et al. Key discoveries in bile acid chemistry and biology and their clinical applications:history of the last eight decades[J]. J Lipid Res, 2014,55(8):1553-1595. |
[6] |
Monte MJ, Marin JJ, Antelo A, et al. Bile acids:chemistry, physiology, and pathophysiology[J]. World Journal of Gastroenterology, 2009,15(7):804-816.
URL pmid: 19230041 |
[7] |
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016,24(1):41-50.
URL pmid: 27320064 |
[8] |
Sayin S, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring fxr antagonist[J]. Cell Metabolism, 2013,17(2):225-235.
URL pmid: 23395169 |
[9] |
Li J, Dawson PA. Animal models to study bile acid metabolism[J]. Biochimica Et Biophysica Acta, 2019,1865(5):895-911.
URL pmid: 29782919 |
[10] |
Guilloteau P, Zabielski R, et al. Nutritional programming of gastrointestinal tract development. is the pig a good model for man?[J]. Nutrition Research Reviews, 2010,23(1):4-22.
URL pmid: 20500926 |
[11] |
Wang M, Donovan SM. Human microbiota-associated swine:current progress and future opportunities[J]. Ilar Journal, 2015,56(1):63-73.
URL pmid: 25991699 |
[12] | 孙静, 杜蕾, 丁玉春, 等. 无菌猪的制备与微生物质量控制[J]. 中国实验动物学报, 2017,25(6):699-702. |
Sun J, Du L, Ding YC, et al. Breeding and microbiological quality control of germ-free pigs[J]. Acta Laboratorium Animalis Scientia Sinica, 2017,25(6):699-702. | |
[13] |
Sun J, Du L, Li XL, et al. Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets[J]. Scientific Reports, 2019,9(1):18675.
URL pmid: 31822779 |
[14] |
Kim HB, Isaacson RE. The pig gut microbial diversity:understanding the pig gut microbial ecology through the next generation high throughput sequencing[J]. Veterinary Microbiology, 2015,177:242-251.
URL pmid: 25843944 |
[15] | 孙静, 杜蕾, 李晓蕾, 等. 粪便移植实验仔猪模型的构建方法:中国, CN201811024719. 3[P]. 2018-12-8. |
Sun J, Du L, Li XL, et al. Establishment of fecal microbiota transplantation model for piglets:China, CN201811024719. 3[P]. 2018-12-8. | |
[16] | Hu L, Geng S, Li Y, et al. Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J]. Frontiers in Microbiology, 2018,8(2663):1-16. |
[17] |
Fang W, Zhang L, Meng Q, et al. Effects of dietary pectin on the profile and transport of intestinal bile acids in young pigs[J]. Journal of Animal Science, 2018,96(11):4743-4754.
URL pmid: 30102377 |
[18] |
Guo J, Zhao MH, Liang S, et al. Liver receptor homolog 1 influences blastocyst hatching in pigs[J]. The Journal of Reproduction and Development, 2016,62(3):297-303.
URL pmid: 26971889 |
[19] |
Ponsuksili S, Murani E, et al. Identification of functional candidate genes for body composition by expression analyses and evidencing impact by association analysis and mapping[J]. Biochimica Et Biophysica Acta, 2005,1730(1):31-40.
doi: 10.1016/j.bbaexp.2005.06.004 URL pmid: 16005530 |
[20] |
Haslewood GA. Bile salts of germ-free domestic fowl and pigs[J]. The Biochemical Journal, 1971,123(1):15-18.
URL pmid: 5128663 |
[21] |
Lin S, Yang X, Yuan P, et al. Undernutrition shapes the gut microbiota and bile acid profile in association with altered gut-liver fxr signaling in weaning pigs[J]. Journal of Agricultural and Food Chemistry, 2019,67(13):3691-3701.
URL pmid: 30864445 |
[22] | Hamilton JP, Xie G, Raufman JP, et al. Human cecal bile acids:concentration and spectrum[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2007,293(1):256-263. |
[23] |
Kwekkeboom J, Princen HM, Van Voorthuizen EM, et al. Bile acids exert negative feedback control on bile acid synjournal in cultured pig hepatocytes by suppression of cholesterol 7 alpha-hydroxylase activity[J]. Hepatology, 1990,12(5):1209-1215.
doi: 10.1002/hep.1840120522 URL pmid: 2227820 |
[24] |
Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring fxr antagonist[J]. Cell Metabolism, 2013,17(2):225-235.
doi: 10.1016/j.cmet.2013.01.003 URL pmid: 23395169 |
[25] |
Si GL, Yao P, Shi L. Rapid determination of bile acids in bile from various mammals by reversed-phase ultra-fast liquid chromatography[J]. Journal of Chromatographic Science, 2015,53(7):1060-1065.
URL pmid: 25520305 |
[26] |
Aldini R, Roda A, Montagnani M, et al. Relationship between structure and intestinal absorption of bile acids with a steroid or side-chain modification[J]. Steroids, 1996,61(10):590-597.
doi: 10.1016/s0039-128x(96)00119-5 URL pmid: 8910972 |
[27] | Mi S, Lim DW, et al. Determination of bile acids in piglet bile by solid phase extraction and liquid chromatography-electrospray tandem mass spectrometry[J]. Lipids, 2016,51(3):359-372. |
[28] | Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease[J]. Molecular Aspects of Medicine, 2017,56(8):54-65. |
[29] |
Dürre P, Andreesen J. Purine and glycine metabolism by purinolytic clostridia[J]. Journal of Bacteriology, 1983,154(1):192-199.
URL pmid: 6833177 |
[30] | Xing M, Wei Y, Zhou Y. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria[J]. Nature Communications, 2019,10(1):1-11. |
[31] |
Chiang JYL. Bile acids:regulation of synjournal[J]. Journal of Lipid Research, 2009,50(10):1955-1966.
URL pmid: 19346330 |
[32] | Cariello M, Piccinin E, Garcia-irigoyen O, et al. Nuclear receptor fxr, bile acids and liver damage:introducing the progressive familial intrahepatic cholestasis with fxr mutations[J]. Biochimica Et Biophysica Acta. Molecular Basis of Disease, 2018,1864(4):1308-1318. |
[33] |
Keitel V, Stindt J, Häussinger D. Bile acid-activated receptors:gpbar1(tgr5)and other G protein-coupled receptors[J]. Handbook of Experimental Pharmacology, 2019,256:19-49.
URL pmid: 31302759 |
[34] |
Gunness P, Williams BA, et al. Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model[J]. Molecular Nutrition & Food Research, 2016,60(3):642-651.
URL pmid: 26694900 |
[35] |
Gunness P, Michiels J, et al. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan[J]. FASEB Journal, 2016,30(12):4227-4238.
URL pmid: 27630168 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||