生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 40-48.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0137
孙瑞萍1,2(), 王峰1, 晁哲1,2, 刘海隆1,2, 邢漫萍1, 刘圈炜1,2, 郑心力1, 黄丽丽1, 魏立民1,2()
收稿日期:
2020-02-15
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
孙瑞萍,女,博士,副研究员,研究方向:家畜遗传育种与繁殖;E-mail: 基金资助:
SUN Rui-ping1,2(), WANG Feng1, CHAO Zhe1,2, LIU Hai-long1,2, XING Man-ping1, LIU Quan-wei1,2, ZHENG Xin-li1, HUANG Li-li1, WEI Li-min1,2()
Received:
2020-02-15
Published:
2020-10-26
Online:
2020-11-02
摘要:
为研究microRNA(miRNA)在五指山猪和长白猪肌肉发育过程中的差异及其对骨骼肌发育转录后调控的影响,以8月龄的五指山猪和长白猪背最长肌为材料,通过Solexa测序技术结合生物信息学筛选与骨骼肌发育相关的差异miRNAs。结果从2个文库中共鉴定获得311种己知的猪miRNAs,五指山猪和长白猪分别鉴定出300和293个已知miRNAs,同时分别发现了96和79新的miRNAs。筛选到的17个差异的miRNAs中有15个miRNAs在五指山猪背肌中表达量显著下调,2个miRNAs表达量显著上调。这些差异miRNAs靶基因预测共靶向574个基因,富集到30个差异显著生物学通路(P<0.05),其中富集到胰岛素信号通路的miRNAs有5个(ssc-miR-362,ssc-miR-455-3p,ssc-miR-497,ssc-miR-499-5p和ssc-miR-874)。本研究从miRNA层面揭示了8月龄五指山猪和长白猪骨骼肌生长发育的差异,为进一步研究骨骼肌生长发育的分子机理提供基础数据。
孙瑞萍, 王峰, 晁哲, 刘海隆, 邢漫萍, 刘圈炜, 郑心力, 黄丽丽, 魏立民. 五指山猪与长白猪骨骼肌miRNA转录组比较分析[J]. 生物技术通报, 2020, 36(10): 40-48.
SUN Rui-ping, WANG Feng, CHAO Zhe, LIU Hai-long, XING Man-ping, LIU Quan-wei, ZHENG Xin-li, HUANG Li-li, WEI Li-min. Comparative Analysis on miRNA Transcriptome of Skeletal Muscle Between Wuzhishan Pig and Landrace[J]. Biotechnology Bulletin, 2020, 36(10): 40-48.
基因名 | 引物序列(5'-3') | Tm/℃ |
---|---|---|
ssc-miR-874 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACgctgta | 57 |
F:ACACTCCAGCTGGGCTGCCCTGGCCCGAGGG | ||
ssc-miR-208b | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACacaaac | 60 |
F:ACACTCCAGCTGGGATAAGACGAACAAAAG | ||
ssc-miR-369 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGAatcttt | 58 |
F:ACACTCCAGCTGGGAATAATACATGGTTG | ||
ssc-miR-499-5p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACaaacat | 57 |
F:ACACTCCAGCTGGGTTAAGACTTGCAGTG | ||
ssc-miR-455-5p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACcgatgt | 56 |
F:ACACTCCAGCTGGGTATGTGCCTTTGGACT | ||
ssc-miR-497 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACacaaac | 56 |
F:ACACTCCAGCTGGGCAGCAGCACACTGTG | ||
ssc-miR-144 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACgtacat | 58 |
F:ACACTCCAGCTGGGTACAGTATAGATG | ||
ssc-miR-451 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACaactca | 56 |
F:ACACTCCAGCTGGGAAACCGTTACCATTAC | ||
ssc-miR-6782-3p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACcagggc | 58 |
F:ACACTCCAGCTGGGTGACCTCTGGTCTCCC | ||
U6 | F:CTCGCTTCGGCAGCACA | 58 |
R:AACGCTTCACGAATTTGCGT | ||
茎环上引物 | TAGTGCGTGTCGTGGAGT |
表1 RT-PCR鉴定引物及相关信息
基因名 | 引物序列(5'-3') | Tm/℃ |
---|---|---|
ssc-miR-874 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACgctgta | 57 |
F:ACACTCCAGCTGGGCTGCCCTGGCCCGAGGG | ||
ssc-miR-208b | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACacaaac | 60 |
F:ACACTCCAGCTGGGATAAGACGAACAAAAG | ||
ssc-miR-369 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGAatcttt | 58 |
F:ACACTCCAGCTGGGAATAATACATGGTTG | ||
ssc-miR-499-5p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACaaacat | 57 |
F:ACACTCCAGCTGGGTTAAGACTTGCAGTG | ||
ssc-miR-455-5p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACcgatgt | 56 |
F:ACACTCCAGCTGGGTATGTGCCTTTGGACT | ||
ssc-miR-497 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACacaaac | 56 |
F:ACACTCCAGCTGGGCAGCAGCACACTGTG | ||
ssc-miR-144 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACgtacat | 58 |
F:ACACTCCAGCTGGGTACAGTATAGATG | ||
ssc-miR-451 | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACaactca | 56 |
F:ACACTCCAGCTGGGAAACCGTTACCATTAC | ||
ssc-miR-6782-3p | RT:GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACcagggc | 58 |
F:ACACTCCAGCTGGGTGACCTCTGGTCTCCC | ||
U6 | F:CTCGCTTCGGCAGCACA | 58 |
R:AACGCTTCACGAATTTGCGT | ||
茎环上引物 | TAGTGCGTGTCGTGGAGT |
类型 | 长白猪 | 五指山猪 |
---|---|---|
Total Raw Reads | 18 644 880 | 23 249 997 |
Total Clean Reads | 17 644 044 | 22 003 289 |
Total Clean Reads Ratio/% | 90.99 | 91.54 |
Total Uniquely mapped reads | 415 134 | 716 221 |
Matched Unique_Count/% | 49.37 | 55.29 |
Q30/% | 97.37 | 97.30 |
表2 测序数据概述
类型 | 长白猪 | 五指山猪 |
---|---|---|
Total Raw Reads | 18 644 880 | 23 249 997 |
Total Clean Reads | 17 644 044 | 22 003 289 |
Total Clean Reads Ratio/% | 90.99 | 91.54 |
Total Uniquely mapped reads | 415 134 | 716 221 |
Matched Unique_Count/% | 49.37 | 55.29 |
Q30/% | 97.37 | 97.30 |
项目 | 长白猪 | 五指山猪 |
---|---|---|
#of_miRNA-5p | 78 | 76 |
#of_miRNA-3p | 73 | 75 |
Total known miRNAs | 300 | 293 |
Known miRNAs precursors | 271 | 266 |
#total_sRNAs_match_hairpin | 10 158 324 | 13 250 243 |
#unique_sRNAs_match_hairpin | 21 220 | 23 700 |
novel_miRNA total_sRNAs_match_hairpin | 129 067 | 86 179 |
Novel miRNAs | 79 | 96 |
表3 各文库已知miRNAs和预测miRNAs统计
项目 | 长白猪 | 五指山猪 |
---|---|---|
#of_miRNA-5p | 78 | 76 |
#of_miRNA-3p | 73 | 75 |
Total known miRNAs | 300 | 293 |
Known miRNAs precursors | 271 | 266 |
#total_sRNAs_match_hairpin | 10 158 324 | 13 250 243 |
#unique_sRNAs_match_hairpin | 21 220 | 23 700 |
novel_miRNA total_sRNAs_match_hairpin | 129 067 | 86 179 |
Novel miRNAs | 79 | 96 |
miRNA ID | 8C | 8W | miRNA ID | 8C | 8W | |
---|---|---|---|---|---|---|
ssc-miR-206 | 116 840 | 213 039 | novel_mir_4 | 3 158 | 2 316 | |
ssc-miR-1 | 202 658 | 137 828 | novel_mir_45 | 286 | 269 | |
ssc-miR-26a | 45 749 | 59 466 | novel_mir_80 | 225 | 201 | |
ssc-let-7a | 50 986 | 39 771 | novel_mir_30 | 242 | 180 | |
ssc-let-7f-5p | 50 283 | 39 238 | novel_mir_32 | 432 | 179 | |
ssc-let-7c | 47 092 | 36 240 | novel_mir_5 | 113 | 125 | |
ssc-let-7g | 44 475 | 34 975 | novel_mir_68 | 61 | 98 | |
ssc-miR-10b | 24 336 | 22 410 | novel_mir_164 | 0 | 98 | |
ssc-miR-10a-5p | 22 838 | 20 891 | novel_mir_42 | 85 | 83 | |
ssc-miR-133a-3p | 19 891 | 16 831 | novel_mir_173 | 0 | 79 |
表4 表达量前10的已知miRNAs和新miRNAs统计
miRNA ID | 8C | 8W | miRNA ID | 8C | 8W | |
---|---|---|---|---|---|---|
ssc-miR-206 | 116 840 | 213 039 | novel_mir_4 | 3 158 | 2 316 | |
ssc-miR-1 | 202 658 | 137 828 | novel_mir_45 | 286 | 269 | |
ssc-miR-26a | 45 749 | 59 466 | novel_mir_80 | 225 | 201 | |
ssc-let-7a | 50 986 | 39 771 | novel_mir_30 | 242 | 180 | |
ssc-let-7f-5p | 50 283 | 39 238 | novel_mir_32 | 432 | 179 | |
ssc-let-7c | 47 092 | 36 240 | novel_mir_5 | 113 | 125 | |
ssc-let-7g | 44 475 | 34 975 | novel_mir_68 | 61 | 98 | |
ssc-miR-10b | 24 336 | 22 410 | novel_mir_164 | 0 | 98 | |
ssc-miR-10a-5p | 22 838 | 20 891 | novel_mir_42 | 85 | 83 | |
ssc-miR-133a-3p | 19 891 | 16 831 | novel_mir_173 | 0 | 79 |
名称 | 长白猪 | 五指山猪 | log2比率 | 名称 | 长白猪 | 五指山猪 | log2比率 | |
---|---|---|---|---|---|---|---|---|
ssc-miR-874 | 184.46 | 41.31 | -2.29 | ssc-miR-497 | 83.69 | 39.02 | -1.23 | |
ssc-miR-208b | 479.94 | 147.66 | -1.83 | ssc-miR-362 | 105.04 | 49.73 | -1.21 | |
ssc-miR-758 | 63.20 | 19.89 | -1.80 | ssc-miR-323 | 1176.80 | 593.71 | -1.11 | |
ssc-miR-455-5p | 315.12 | 110.94 | -1.63 | ssc-miR-144 | 39.28 | 19.89 | -1.11 | |
ssc-miR-210 | 25.62 | 9.95 | -1.49 | ssc-miR-32 | 87.11 | 47.44 | -1.00 | |
ssc-miR-136-5p | 93.09 | 36.72 | -1.47 | ssc-miR-122-5p | 82.84 | 45.14 | -1.00 | |
ssc-miR-369 | 218.62 | 91.05 | -1.39 | ssc-miR-451 | 1283.55 | 4 934.84 | 1.82 | |
ssc-miR-499-5p | 15 675 | 6 818.50 | -1.33 | ssc-miR-6782-3p | 4.27 | 26.78 | 2.52 | |
ssc-miR-455-3p | 40.14 | 18.36 | -1.26 |
表5 差异表达miRNAs统计
名称 | 长白猪 | 五指山猪 | log2比率 | 名称 | 长白猪 | 五指山猪 | log2比率 | |
---|---|---|---|---|---|---|---|---|
ssc-miR-874 | 184.46 | 41.31 | -2.29 | ssc-miR-497 | 83.69 | 39.02 | -1.23 | |
ssc-miR-208b | 479.94 | 147.66 | -1.83 | ssc-miR-362 | 105.04 | 49.73 | -1.21 | |
ssc-miR-758 | 63.20 | 19.89 | -1.80 | ssc-miR-323 | 1176.80 | 593.71 | -1.11 | |
ssc-miR-455-5p | 315.12 | 110.94 | -1.63 | ssc-miR-144 | 39.28 | 19.89 | -1.11 | |
ssc-miR-210 | 25.62 | 9.95 | -1.49 | ssc-miR-32 | 87.11 | 47.44 | -1.00 | |
ssc-miR-136-5p | 93.09 | 36.72 | -1.47 | ssc-miR-122-5p | 82.84 | 45.14 | -1.00 | |
ssc-miR-369 | 218.62 | 91.05 | -1.39 | ssc-miR-451 | 1283.55 | 4 934.84 | 1.82 | |
ssc-miR-499-5p | 15 675 | 6 818.50 | -1.33 | ssc-miR-6782-3p | 4.27 | 26.78 | 2.52 | |
ssc-miR-455-3p | 40.14 | 18.36 | -1.26 |
通路 | 基因数 | 通路 | 基因数 | |
---|---|---|---|---|
Chemokine signaling pathway | 19 | Insulin signaling pathway | 14 | |
Leukocyte transendothelial migration | 16 | Apoptosis | 9 | |
Carbohydrate digestion and absorption | 8 | Pathways in cancer | 27 | |
Inositol phosphate metabolism | 9 | VEGF signaling pathway | 7 | |
NOD-like receptor signaling pathway | 10 | Gap junction | 9 | |
Fc gamma R-mediated phagocytosis | 12 | Jak-STAT signaling pathway | 12 | |
Rap1 signaling pathway | 23 | Regulation of lipolysis in adipocytes | 6 | |
Estrogen signaling pathway | 12 | Insulin secretion | 8 | |
Phospholipase D signaling pathway | 15 | Leishmaniasis | 6 | |
B cell receptor signaling pathway | 10 | Type II diabetes mellitus | 6 | |
Focal adhesion | 21 | Pancreatic cancer | 7 | |
T cell receptor signaling pathway | 13 | Toxoplasmosis | 9 | |
Fc epsilon RI signaling pathway | 8 | Propanoate metabolism | 4 | |
Toll-like receptor signaling pathway | 10 | Phosphatidylinositol signaling system | 10 | |
Bacterial invasion of epithelial cells | 10 | Aldosterone-regulated sodium reabsorption | 5 |
表6 差异miRNA靶基因的KEGG通路分析
通路 | 基因数 | 通路 | 基因数 | |
---|---|---|---|---|
Chemokine signaling pathway | 19 | Insulin signaling pathway | 14 | |
Leukocyte transendothelial migration | 16 | Apoptosis | 9 | |
Carbohydrate digestion and absorption | 8 | Pathways in cancer | 27 | |
Inositol phosphate metabolism | 9 | VEGF signaling pathway | 7 | |
NOD-like receptor signaling pathway | 10 | Gap junction | 9 | |
Fc gamma R-mediated phagocytosis | 12 | Jak-STAT signaling pathway | 12 | |
Rap1 signaling pathway | 23 | Regulation of lipolysis in adipocytes | 6 | |
Estrogen signaling pathway | 12 | Insulin secretion | 8 | |
Phospholipase D signaling pathway | 15 | Leishmaniasis | 6 | |
B cell receptor signaling pathway | 10 | Type II diabetes mellitus | 6 | |
Focal adhesion | 21 | Pancreatic cancer | 7 | |
T cell receptor signaling pathway | 13 | Toxoplasmosis | 9 | |
Fc epsilon RI signaling pathway | 8 | Propanoate metabolism | 4 | |
Toll-like receptor signaling pathway | 10 | Phosphatidylinositol signaling system | 10 | |
Bacterial invasion of epithelial cells | 10 | Aldosterone-regulated sodium reabsorption | 5 |
名称 | 基因号 | 基因名 | 名称 | 基因号 | 基因名 | |
---|---|---|---|---|---|---|
ssc-miR-362 | ENSSSCG00000012652 | SASH3 | ssc-miR-874 | ENSSSCG00000018050 | GRAP | |
ssc-miR-455-3p | ENSSSCG00000021964 | PIK3R1-201 | ssc-miR-874 | ENSSSCG00000017365 | G6PC3 | |
ssc-miR-455-3p | ENSSSCG00000016958 | PIK3R1 | ssc-miR-874 | ENSSSCG00000000263 | TNS2 | |
ssc-miR-455-3p | ENSSSCG00000000997 | PPP1R3G | ssc-miR-874 | ENSSSCG00000003395 | PIK3CD | |
ssc-miR-497 | ENSSSCG00000010253 | HK1 | ssc-miR-874 | ENSSSCG00000007788 | PHKG2 | |
ssc-miR-499-5p | ENSSSCG00000004009 | TCTE3 | ssc-miR-874 | ENSSSCG00000013564 | INSR-201 | |
ssc-miR-874 | ENSSSCG00000017933 | GLUT4 |
表7 靶向胰岛素信号通路的miRNAs
名称 | 基因号 | 基因名 | 名称 | 基因号 | 基因名 | |
---|---|---|---|---|---|---|
ssc-miR-362 | ENSSSCG00000012652 | SASH3 | ssc-miR-874 | ENSSSCG00000018050 | GRAP | |
ssc-miR-455-3p | ENSSSCG00000021964 | PIK3R1-201 | ssc-miR-874 | ENSSSCG00000017365 | G6PC3 | |
ssc-miR-455-3p | ENSSSCG00000016958 | PIK3R1 | ssc-miR-874 | ENSSSCG00000000263 | TNS2 | |
ssc-miR-455-3p | ENSSSCG00000000997 | PPP1R3G | ssc-miR-874 | ENSSSCG00000003395 | PIK3CD | |
ssc-miR-497 | ENSSSCG00000010253 | HK1 | ssc-miR-874 | ENSSSCG00000007788 | PHKG2 | |
ssc-miR-499-5p | ENSSSCG00000004009 | TCTE3 | ssc-miR-874 | ENSSSCG00000013564 | INSR-201 | |
ssc-miR-874 | ENSSSCG00000017933 | GLUT4 |
[1] | 冯紫婷, 安清明, 王大会, 等. miRNA调控家畜肌肉组织生长发育的研究进展[J]. 中国畜牧杂志, 2020,56(7):1-5. |
Feng ZT, An QG, Wang DH, et al. Advances in the regulation of muscle tissue growth and development by microRNAs in livestock[J]. Chinese Journal of Animal Science, 2020,56(7):1-5. | |
[2] | Bartel DP . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297. |
[3] | 汤志雄, 苟德明. miRNA调控成肌分化的研究进展[J]. 中国生物工程杂志, 2017,37(10):103-110. |
Tang ZX, Gou DM. Research progress on miRNA regulation of myogenesis[J]. China Biotechnology, 2017,37(10):103-110. | |
[4] | 习淯. 通城猪和大白猪胎儿期背最长肌miRNA测序及其与转录组和蛋白质组的整合分析[D]. 武汉:华中农业大学, 2019. |
Xi Y. Integration of micrornaome, transcriptome and proteomein prenatal longissimus muscles between Tongcheng and Yorkshire pigs[D]. Wuhan:Huazhong Agriculture University, 2019. | |
[5] | 谢水华. 长白猪和蓝塘猪肌肉发育差异miRNA和mRNA表达谱的整合分析[D]. 广州:中山大学, 2017. |
Xie SH. An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs[D]. Guangzhou:Zhong Shan University, 2017. | |
[6] | 王峰, 魏立民, 郑心力, 等. 海南五指山猪生长发育性能测定研究[J]. 养猪, 2009(3):39-40. |
Wang F, Wei LM, Zheng XL, et al. Determination of growth performance of Hainan Wuzhishan pig[J]. Swine Production, 2009(3):39-40. | |
[7] | 王琪, 齐仁立, 刘虹, 等. 饲粮中添加共轭亚油酸对猪肌肉组织miRNA表达谱的影响[J]. 畜牧兽医学报, 2018,49(9):1908-1918. |
Wang Q, Qi RL, Liu H, et al. Effects of conjugated linoleic acid supplementation in diet on the expression profile of miRNAs in porcine muscle tissue[J]. Acta Veterinaria Et Zootechnica Sinica, 2018,49(9):1908-1918. | |
[8] | Wigmore PM, Stickland NC . Muscle development in large and small pig fetuses.[J]. Journal of Anatomy, 1983,137(2):235-245. |
[9] | 孙丽敏, 姜怀志. mRNA和miRNA调控动物肌肉生长发育及其在绵羊中的研究进展[J]. 中国畜牧杂志, 2018,54(5):15-24. |
Sun LM, Jiang HZ. mRNA and miRNA regulates animal muscle growth and development and the research progress on sheep[J]. Chinese Journal of Animal Science, 2018,54(5):15-24. | |
[10] | 郭晓萍. 猪骨骼肌miRNA转录组分析及miR-486功能的初步研究[D]. 南宁:广西大学, 2015. |
Guo XP. MiRNA transcriptome analysis of porcine skeletal muscle and preliminary study on the function of miR-486[D]. Nanning:Guangxi University, 2015. | |
[11] | 陈伟. 莱芜猪和大白猪背最长肌miRNA与mRNA转录组测序及特征分析[D]. 泰安:山东农业大学, 2014. |
Chen W. Sequencing and characterization of the miRNAome and transcriptome of longissimus dorsi muscle between Laiwu and Yorkshire pigs[D]. Taian:Shandong Agriculture University, 2014. | |
[12] |
Wang X, Zhang P, Li L, et al. miRNA editing landscape reveals miR-34c regulated spermatogenesis through structure and target change in pig and mouse[J]. Biochemical and Biophysical Research Communications, 2018,502(4):486-492.
URL pmid: 29864426 |
[13] | Sato MM, Nashimoto M, Katagiri T, et al. Bone morphogenetic protein-2 down-regulates miR-206 expression by blocking its maturation process[J]. Biochem Biophys Res Commun, 2009,383(1):125-129. |
[14] | 王敬, 王琪, 黄金秀, 等. 动物肌肉生长发育相关microRNAs的表达模式和调控机制[J]. 动物营养学报, 2016,28(3):687-694. |
Wang J, Wang Q, Huang JX, et al. Expression patterns and regulation mechanisms of microRNAs relate in growth and development of muscle in animals[J]. Chinese Journal of Animal Nutrition, 2016,28(3):687-694. | |
[15] |
Xie SS, Li X, Qian L, et al. An integrated analysis of mRNA and miRNA in skeletal muscle from Myostatin-edited Meishan pigs[J]. Genome, 2019,62(5):305-315.
URL pmid: 30913397 |
[16] | 王红梅. 猪不同肌纤维类型中转录组差异表达的miRNAs生物学功能研究[D]. 雅安:四川农业大学, 2014. |
Wang HM . The biological function analysis of transcriptome differentially expressed miRNAs in porcine muscle fibre types[D]. Yaan:Sichuan Agriculture University, 2014. | |
[17] | Rooij EV, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J]. Developmental Cell, 2009,17(5):673. |
[18] | 王晓燕. MicroRNA-499-5p靶向Sox6调节猪骨骼肌慢肌纤维形成的研究[D]. 雅安:四川农业大学, 2017. |
Wang XY. MiR-499-5p regulates the formation of porcine slow myofibers by targeting Sox6[D]. Yaan:Sichuan Agriculture University, 2017. | |
[19] | Mccarthy JJ, Esser KA, Peterson CA, et al. Evidence of MyomiR network regulation of -myosin heavy chain gene expression during skeletal muscle atrophy[J]. Physiological Genomics, 2009,39(3):219-226. |
[20] | 李艳君. miR-208b和miR-499在巴马香猪骨骼肌肌纤维类型转化中的作用研究[D]. 南宁:广西大学, 2015. |
Li YJ. Effect of miR-208b and miR-499 on skeletal muscle fibre types transformation in Bama Xiang pig[D]. Nanning:Guangxi University, 2015. | |
[21] | 刘静. 骨骼肌能量代谢与肌纤维结构偶联调控机制研究[D]. 南京:南京大学, 2017. |
Liu J . The coordinate control mechanism of skeletal muscle energy metabolism and structural programs[D]. Nanjing:Nanjing University, 2017. | |
[22] | 王志秀. 基于转录组和蛋白组数据鉴定猪肌肉生长和脂肪沉积相关的基因[D]. 北京:中国农业大学, 2017. |
Wang ZX. Identification of genes related to muscle growth and lipid deposition from transcriptomic and proteomic profiles in pig[D]. Beijing:China Agriculture University, 2017. | |
[23] | 赵拴平. 猪骨骼肌生长发育相关基因和microRNA鉴定及其网络互作分析[D]. 杨凌:西北农林科技大学, 2012. |
Zhao SP. Identification of genes and miRNA associated with skeletal muscle development and network interaction in porcine[D]. Yangling:Northwest A & F University, 2012. | |
[24] |
Liu R, Jin JP. Calponin isoforms CNN1, CNN2 and CNN3:Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells[J]. Gene, 2016,585(1):143-153.
doi: 10.1016/j.gene.2016.02.040 URL pmid: 26970176 |
[25] | 韦伟. MIR-29和MIR-195/497调节骨骼肌生长发育的功能研究[D]. 武汉:华中农业大学, 2014. |
Wei W. The role of miR-29 and miR-195/497 in skeletal muscle growth and development[D]. Wuhan:Huazhong Agriculture University, 2014. | |
[26] | 王言, 顾以韧, 杨雪梅, 等. 不同猪种背最长肌中miR-23a、miR-151、miR-299、miR-199a和miR-497的差异表达研究[J]. 养猪, 2019(6):62-65. |
Wang Y, Gu YR, Yang XM, et al. Study on differential expression of miR-23a, miR-151, miR-299, miR-199a and miR-497 in longissimus dorsi of different pig breeds[J]. Swine Production, 2019(6):62-65. | |
[27] | 杨雪梅, 顾以韧, 梁艳, 等. miR-1、miR-27a、miR-369和miR-378在7个地方猪种背最长肌中的表达与肉质性状的关系研究[J]. 中国畜牧杂志, 2018,54(2):30-34. |
Yang M, Gu YR, Liang Y, et al .Study on the relationship between the expression of miR-1, miR-27a, miR-369 and miR-378 in the longus dorsiflexus muscle of 7 local pig breeds and meat quality[J]. Chinese Journal of Animal Science, 2018,54(2):30-34. | |
[28] | 令幸幸, 赵硕, 李征, 等. mmu-miR-451a调节小鼠成肌细胞增殖的功能研究[J]. 北京农学院学报, 2018,33(4):45-49. |
Ling XX, Zhao S, Li Z, et al. Study on the function of mmu-miR-451a in regulating the proliferation of myoblast[J]. Journal of Beijing University of Agriculture, 2018,33(4):45-49. | |
[29] | 张瑾, 史仍飞. microRNAs在衰老性骨骼肌萎缩中的作用[J]. 生命的化学, 2019,39(6):1120-1126. |
Zhang J, Shi RF. The roles of microRNAs in age-related sarcopenia[J]. Chemistry of Life, 2019,39(6):1120-1126. | |
[30] | Davidsen PK, Gallagher IJ, Hartman JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression[J]. Journal of Applied Physiology, 2011,110(2):309-317. |
[31] |
Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway:insights from genetic models[J]. Skeletal Muscle, 2011,1(1):4.
URL pmid: 21798082 |
[32] |
Moresi V, Mcanally J, Richardson JA, et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486[J]. Proceedings of the National Academy of Sciences of the United States of America. 2010,107(9):4218-4223.
URL pmid: 20142475 |
[33] | Nakatani M, Hitachi K, Tsuchida K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression[J]. The International Journal of Biochemistry and Cell Biology. 2014,47(2):93-103. |
[1] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
[2] | 张静, 熊燕, 华永琳, 郭玉, 熊显荣, 字向东, 李键. 小鼠骨骼肌纤维类型定量PCR内参基因的筛选[J]. 生物技术通报, 2021, 37(2): 71-79. |
[3] | 许冲, 陈琦, 苏瑛, 黄汉光, 崔红艳, 黄骏腾, 常羽. 雷州黑鸭胚胎期骨骼肌发育表达与功能分析[J]. 生物技术通报, 2016, 32(9): 149-155. |
[4] | 刘伟灿,周永刚,王兴超,王法微,王南,董园园,李晓薇,李海燕. 植物MicroRNA介导的基因调控在作物改良中的应用潜能[J]. 生物技术通报, 2016, 32(4): 6-15. |
[5] | 高颖晖,周万红,窦鹏,戚一曼,王敦. 九香虫醇提物对运动大鼠骨骼肌抗氧化酶活性及其基因表达水平的影响[J]. 生物技术通报, 2015, 31(12): 146-149. |
[6] | 覃玉娥, 刘朝奇. Nrf2及其相关抗氧化基因的miRNA调控研究进展[J]. 生物技术通报, 2013, 0(9): 34-37. |
[7] | 王玮;袁建龙;金永;朱兵;岳群华;梁浩;郭旭东;刘东军;仓明;. 构建骨骼肌特异表达人FS基因载体及其稳定转染绵羊胎儿成纤维细胞[J]. , 2011, 0(11): 140-145. |
[8] | 李方华;庞全海;侯玲玲;郑扬;关伟军;马月辉;. 骨骼肌卫星细胞生物学特性及临床应用前景[J]. , 2009, 0(10): 45-48. |
[9] | 衡文娜;郭春华;张晓晖;张重庆;陈玉红;. 小型猪与梅山猪Prop1基因的比较分析[J]. , 2007, 0(05): 144-147. |
[10] | 叶香尘;兰干球;蒋和生;郭亚芬;王爱德;. 猪电压依赖性阴离子通道1基因的分离及物理定位[J]. , 2006, 0(03): 93-94. |
[11] | 秦春圃. 用RAPD标记中国小型地方猪品种的遗传多样性[J]. , 2005, 0(05): 82-82. |
[12] | 岳枫;马文丽;郑文岭. RNAi的不同沉默机制及其应用[J]. , 2004, 0(03): 5-7. |
[13] | 朱遐;. Integrated Genetics Inc.宣布将推出几种新的DNA试验法[J]. , 1990, 0(02): 9-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||