[1] |
农业农村部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020.
|
|
Fisheries and fisheries administration of the ministry of agriculture and rural affairs of China China fisheries statistics yearbook 2020[M]. Beijing: China Agriculture Press, 2020.
|
[2] |
郑娜. 海参养殖常见病害及防治技术[J]. 齐鲁渔业, 2017(34):25-26.
|
|
Zheng N. Common diseases in sea cucumber breeding and their control techniques[J]. Qilu Fishery, 2017(34):25-26.
|
[3] |
Guo X, Wang Y, Qin Y, et al. Structures, properties and application of alginic acid:A review[J]. International Journal of Biological Macromolecules, 2020, 162:618-628.
doi: 10.1016/j.ijbiomac.2020.06.180
URL
|
[4] |
喻虎. 海藻多糖制备与应用研究[J]. 农业与技术, 2018, 38(20):255.
|
|
Yu H. Research on preparation and application of seaweed polysaccharide[J]. J Agr Sci Tech, 2018, 38(20):255.
|
[5] |
Hentati F, Tounsi L, Djomdi D, et al. Bioactive polysaccharides from seaweeds[J]. Molecules, 2020, 25:3152.
doi: 10.3390/molecules25143152
URL
|
[6] |
Besednova N, Zaporozhets T, et al. Extracts and marine algae polysaccharides in therapy and prevention of inflammatory diseases of the intestine[J]. Marine Drugs, 2020, 18(6):289.
doi: 10.3390/md18060289
URL
|
[7] |
Cheng C, Yang W, et al. Transcriptomically revealed oligo-fucoidan enhances the immune system and protects hepatocytes via the ASGPR/STAT3/HNF4A axis[J]. Biomol, 2020, 10(6):898.
doi: 10.3390/biom10060898
URL
|
[8] |
Liu W, Zhou S, Balasubramanian B, et al. Dietary seaweed(Enteromorpha)polysaccharides improve growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis[J]. Fish Shellfish Immunol, 2020, 104:202-212.
doi: 10.1016/j.fsi.2020.05.079
URL
|
[9] |
Cheng W, Yu J. Effects of the dietary administration of sodium alginate on the immune responses and disease resistance of Taiwan abalone, Haliotis diversicolor supertexta[J]. Fish & Shellfish Immunology, 2013, 34:902-908.
|
[10] |
Zhu B, Yin H. Alginate lyase:Review of major sources and classification, properties, structure-function analysis and applications[J]. Bioengineered Bugs, 2015, 6(3):125-131.
|
[11] |
周敏, 王海英, 冷凯良, 等. 基于宏基因组学的海带降解菌群微生物多样性及其褐藻多糖降解酶系分析[J]. 海洋湖沼通报, 2018, 6:109-117.
|
|
Zhou M, Wang HY, Leng KL, et al. Analysis of microbial diversity of laminaria degrading bacteria and its fucoidan degrading enzyme system based on metagenomics[J]. Marine Limnology Bulletin, 2018, 6:109-117.
|
[12] |
管斌, 倪雪朋, 李悦明, 等. 海藻多糖降解酶的研究进展[J]. 中国酿造, 2010, 29(9):8-12.
|
|
Guan B, Ni XP, et al. Research progress of seaweed polys-accharide degrading enzymes[J]. Chinese Brew, 2010, 29(9):8-12.
|
[13] |
田良. 仿刺参消化道中产酶菌株的筛选鉴定及其在仿刺参饲料中的应用[D]. 厦门:集美大学, 2015.
|
|
Tian L. Screening and identification of enzyme-producing strains in the digestive tract of sea cucumber and its application in sea cucumber feed[D]. Xiamen:Jimei University, 2015.
|
[14] |
李凤辉. 刺参消化道微生物组成及其产酶功能研究[D]. 上海:上海海洋大学, 2014.
|
|
Li FH. The composition and enzyme-producing function of the microflora in the digestive tract of the sea cucumber Apostichopus japonicus[D]. Shanghai:Shanghai Ocean University, 2014.
|
[15] |
Cheng C, Yang W, Hsiao M, et al. Transcriptomically revealed oligo-fucoidan enhances the immune system and protects hepatocytes via the ASGPR/STAT3/HNF4A axis[J]. Biomolecules, 2020, 10(6):898.
doi: 10.3390/biom10060898
URL
|
[16] |
Wu S, Yang W, Cheng C, et al. Low molecular weight fucoidan prevents radiation-induced fibrosis and secondary tumors in a zebrafish model[J]. Cancers(Basel), 2020, 12(6):1608.
|
[17] |
Van Doan H, Tapingkae W, Moonmanee T, et al. Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus.[J]. Fish & Shellfish Immunology, 2016, 55:186-194.
|
[18] |
Gurpilhares D, Cinelli L, Simas N, et al. Marine prebiotics:Polysaccharides and oligosaccharides obtained by using microbial enzymes[J]. Food Chemistry, 2019, 280:175-186.
doi: S0308-8146(18)32118-6
pmid: 30642484
|
[19] |
林清菁. 一株海藻多糖降解菌的分离与鉴定[J]. 微生物学通报, 2014, 41(11):2208-2215.
|
|
Lin QJ. Isolation and identification of a seaweed polysaccharide degrading bacteria[J]. Microbiology Bulletin, 2014, 41(11):2208-2215.
|
[20] |
朱大玲, 唐啸龙, 张宝玉, 等. 一株海藻多糖降解菌的分离鉴定及产酶条件优化[J]. 海洋科学, 2017, 41(8):101-109.
|
|
Zhu DL, Tang XL, et al. Isolation and identification of a seaweed polysaccharide degrading bacteria and optimization of its enzyme production conditions[J]. Marine Sci, 2017, 41(8):101-109.
|
[21] |
潘爱红, 李江, 等. 南极交替单胞菌R11-5产卡拉胶酶的发酵条件优化[J]. 微生物学通报, 2018, 45(9):2022-2034.
|
|
Pan AH, Li H, Wang L, et al. Optimization of fermentation conditions for carrageenase production by alteromonas antarctica R11-5[J]. Microbiology Bulletin, 2018, 45(9):2022-2034.
|
[22] |
Wang XT, Wang LL, Che J, et al. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1[J]. App Microb Biotech, 2015, 99:5843-5853.
doi: 10.1007/s00253-015-6583-4
URL
|
[23] |
Sha YJ, Liu M, Wang BJ, et al. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates[J]. Microbiology, 2016, 85(1):109-115.
doi: 10.1134/S0026261716010112
URL
|
[24] |
李昌明. 海参肠道微生物多样性分析及菌株s12~T褐藻胶裂解酶研究[D]. 济南, 山东大学, 2019.
|
|
Li CM. Diversity analysis of sea cucumber intestinal microorganisms and study on S12~T alginate lyase[D]. Ji'nan:Shandong University, 2019.
|