生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 298-307.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1372
收稿日期:
2022-11-07
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
潘虎同为本文通讯作者作者简介:
潘虎,男,博士,副研究员,研究方向:农药残留检测与污染防控;E-mail: ph2032007@126.com;
基金资助:
PAN Hu1,2,3(), ZHOU Zi-qiong4, TIAN Yun2
Received:
2022-11-07
Published:
2023-06-26
Online:
2023-07-07
摘要:
为筛选适宜青藏高原地区的异菌脲高效降解菌株资源,采用富集培养法从西藏自治区蔬菜大棚土壤中分离得到Y-20、Y-29和Y-32三株异菌脲高效降解菌株,通过形态特征、生理生化特性和16S rRNA基因序列分析对上述菌株进行初步鉴定,探讨NaCl浓度(m/V)、温度、pH值、接种量(V/V)和异菌脲初始浓度等因素对其异菌脲降解速率的影响,采用气相色谱法和PCR技术分析了上述菌株的异菌脲代谢途径及降解基因(ipaH)。结果表明,菌株Y-20、Y-29和Y-32为微杆菌属(Microbacterium)的3个不同种;在1.0% NaCl(m/V)、pH 7.0、25-30℃、5%的接种量(V/V)和100 mg/L初始异菌脲浓度的最佳条件下,上述菌株能够在8-12 h内完全降解100 mg/L的异菌脲;上述菌株能够将异菌脲降解为N-(3,5-二氯苯基)-2,4-二氧代咪唑烷和异丙基氨基甲酸,且含有高度相似的ipaH基因序列(99.14%-99.69%)。本研究为高原地区异菌脲污染环境的生物修复提供了菌株资源和理论依据。
潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307.
PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains[J]. Biotechnology Bulletin, 2023, 39(6): 298-307.
测试项目Test item | Y-20 | Y-29 | Y-32 | 测试项目Test item | Y-20 | Y-29 | Y-32 | |
---|---|---|---|---|---|---|---|---|
邻硝基苯-半乳糖苷2-Nitrophenyl-galactopyranoside | + | + | - | Kohn明胶Kohn gelatin | + | + | - | |
精氨酸Arginine | - | - | - | 葡萄糖Glucose | + | + | - | |
赖氨酸Lysine | - | - | - | 甘露醇Mannitol | + | + | - | |
鸟氨酸Ornithine | - | - | - | 肌醇Inositol | - | - | - | |
柠檬酸钠Sodium citrate | + | +w | + | 山梨醇Sorbitol | - | - | - | |
硫代硫酸钠Sodium thiosulfate | - | - | - | 鼠李糖Rhamnose monohydrate | + | - | - | |
尿素Urea | - | - | - | 蔗糖Sucrose | + | + | - | |
色氨酸Tryptophan(TDA) | + | +w | + | 密二糖Disaccharide | + | - | - | |
色氨酸Tryptophan(IND) | - | - | - | 苦杏仁苷Amygdalin | + | + | - | |
丙酮酸盐Pyruvate | + | + | - | 阿拉伯糖Arabinose | + | - | +w |
表1 菌株Y-20、Y-29和Y-32的部分生理生化鉴定结果
Table 1 Partial physiological and biochemical identification results of strain Y-20, Y-29 and Y-32
测试项目Test item | Y-20 | Y-29 | Y-32 | 测试项目Test item | Y-20 | Y-29 | Y-32 | |
---|---|---|---|---|---|---|---|---|
邻硝基苯-半乳糖苷2-Nitrophenyl-galactopyranoside | + | + | - | Kohn明胶Kohn gelatin | + | + | - | |
精氨酸Arginine | - | - | - | 葡萄糖Glucose | + | + | - | |
赖氨酸Lysine | - | - | - | 甘露醇Mannitol | + | + | - | |
鸟氨酸Ornithine | - | - | - | 肌醇Inositol | - | - | - | |
柠檬酸钠Sodium citrate | + | +w | + | 山梨醇Sorbitol | - | - | - | |
硫代硫酸钠Sodium thiosulfate | - | - | - | 鼠李糖Rhamnose monohydrate | + | - | - | |
尿素Urea | - | - | - | 蔗糖Sucrose | + | + | - | |
色氨酸Tryptophan(TDA) | + | +w | + | 密二糖Disaccharide | + | - | - | |
色氨酸Tryptophan(IND) | - | - | - | 苦杏仁苷Amygdalin | + | + | - | |
丙酮酸盐Pyruvate | + | + | - | 阿拉伯糖Arabinose | + | - | +w |
图4 NaCl浓度、pH值、温度、接种量和异菌脲初始浓度对菌株Y-20、Y-29和Y-32异菌脲降解率的影响及其最佳降解曲线
Fig. 4 Effects of NaCl concentration, pH value, temperature, inoculation amount and initial iprodione concentration on the iprodione-degradation rates by strain Y-20, Y-29 and Y-32 and their optimal degradation curves
图5 发酵液中异菌脲与其代谢产物含量的变化及质谱分析结果 A:0 h发酵液;B:6 h发酵液;C:12 h发酵液;D:化合物1的一级质谱图谱;E:化合物2的一级质谱图谱
Fig. 5 Change of iprodione and its metabolites in the fermentation liquor and the mass spectrometry analysis results A: Fermentation broth of 0 h. B: Fermentation broth of 6 h. C: Fermentation broth of 12 h. D: Primary mass spectrometry result of compound 1. E: Primary mass spectrometry result of compound 2
样品来源 Source | 分离菌株种类 Species of isolates | 异菌脲初始浓度 Initial concentration of iprodione | 降解率 Degradation rate/% | 降解时间 Degradation time | 降解基因 Degradation genes |
---|---|---|---|---|---|
土壤 Soil | Arthrobacter sp. MA6[ | 9.90 mg/L | 86.7 | 7 d | ND |
土壤 Soil | Pseudomonas fluorescens, Pseudomonas sp., Pseudomonas paucimobilis[ | 8.25 mg/L | 100 | 20-24 h | ND |
土壤 Soil | Zygosaccharomyces rouxii DBVPG 6399[ | 1 mg/L | 100 | 9 d | ND |
农田土壤 Farmland soil | Arthrobacter sp.CQH[ | 100 mg/L | 100 | 112 h | ND |
土壤 Soil | Microbacterium sp. CHQ-1[ | 100 mg/L | 100 | 96 h | ND |
活性污泥 Activated sludge | Microbacterium sp.YJN-G[ | 100 mg/L | 100 | 24 h | ipaH |
酸性土壤 Acidic soil | Arthrobacter sp. C1, Achromobacter sp. C2[ | 60 mmol/L | 100 | 10 d | ND |
三七根际土壤 Root-zone soil of Panax notoginseng | Bacillus sp.KMS-1[ | 25 mg/L | 41.4 | 7 d | ND |
葡萄园种植土壤 Vineyards grow soil | Paenarthrobacter sp. YJN-5[ Paenarthrobacter sp. YJN-D | 1.5 mmol/L | 95 | 80 h | ipaH, ddaH, duaH |
大棚土壤 Greenhouse soil | Microbacterium sp. Y-20、Y-29、Y-32 | 100 mg/L | 100 | 8-12 h | ipaH |
表2 异菌脲降解菌株的基本特性
Table 2 Basic characteristics of iprodione-degrading strains
样品来源 Source | 分离菌株种类 Species of isolates | 异菌脲初始浓度 Initial concentration of iprodione | 降解率 Degradation rate/% | 降解时间 Degradation time | 降解基因 Degradation genes |
---|---|---|---|---|---|
土壤 Soil | Arthrobacter sp. MA6[ | 9.90 mg/L | 86.7 | 7 d | ND |
土壤 Soil | Pseudomonas fluorescens, Pseudomonas sp., Pseudomonas paucimobilis[ | 8.25 mg/L | 100 | 20-24 h | ND |
土壤 Soil | Zygosaccharomyces rouxii DBVPG 6399[ | 1 mg/L | 100 | 9 d | ND |
农田土壤 Farmland soil | Arthrobacter sp.CQH[ | 100 mg/L | 100 | 112 h | ND |
土壤 Soil | Microbacterium sp. CHQ-1[ | 100 mg/L | 100 | 96 h | ND |
活性污泥 Activated sludge | Microbacterium sp.YJN-G[ | 100 mg/L | 100 | 24 h | ipaH |
酸性土壤 Acidic soil | Arthrobacter sp. C1, Achromobacter sp. C2[ | 60 mmol/L | 100 | 10 d | ND |
三七根际土壤 Root-zone soil of Panax notoginseng | Bacillus sp.KMS-1[ | 25 mg/L | 41.4 | 7 d | ND |
葡萄园种植土壤 Vineyards grow soil | Paenarthrobacter sp. YJN-5[ Paenarthrobacter sp. YJN-D | 1.5 mmol/L | 95 | 80 h | ipaH, ddaH, duaH |
大棚土壤 Greenhouse soil | Microbacterium sp. Y-20、Y-29、Y-32 | 100 mg/L | 100 | 8-12 h | ipaH |
[1] | 来祺. 二甲酰亚胺类杀菌剂代谢产物-3, 5-二氯苯胺的降解行为与生态毒性效应[D]. 南京: 南京农业大学, 2020. |
Lai Q. Degradation behavior and ecological toxicity of dicarboximide fungicide metabolite-3, 5-dichloroaniline[D]. Nanjing: Nanjing Agricultural University, 2020. | |
[2] | 陈夕军, 王艳, 童蕴慧, 等. 灰葡萄孢抗二甲酰亚胺类杀菌剂研究进展[J]. 植物保护, 2009, 35(3): 16-19. |
Chen XJ, Wang Y, Tong YH, et al. Advances in research of the resistance of Botrytis cinerea to dicarboximides fungicides[J]. Plant Prot, 2009, 35(3): 16-19. | |
[3] | 肖翔. 核盘菌对二甲酰亚胺类杀菌剂菌核净的抗性机理研究[D]. 武汉: 华中农业大学, 2013. |
Xiao X. Molecular mechanism of Sclerotinia sclerotiorum to the DCF fungicide dimethachlon[D]. Wuhan: Huazhong Agricultural University, 2013. | |
[4] | Eevers N, White JC, Vangronsveld J, et al. Bio- and phytoremediation of pesticide-contaminated environments: a review[J]. Adv Bot Res, 2017, 83: 277-318. |
[5] |
Carneiro LS, Martínez LC, Gonçalves WG, et al. The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers[J]. Ecotoxicol Environ Saf, 2020, 189: 109991.
doi: 10.1016/j.ecoenv.2019.109991 URL |
[6] |
Bernardes PM, Andrade-Vieira LF, Aragão FB, et al. Toxicological effects of comercial formulations of fungicides based on procymidone and iprodione in seedlings and root tip cells of Allium cepa[J]. Environ Sci Pollut Res Int, 2019, 26(20): 21013-21021.
doi: 10.1007/s11356-019-04636-x |
[7] |
Washington T, Tchounwou PB. Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma(HepG2)cells exposed to iprodione[J]. Int J Environ Res Public Health, 2004, 1(1): 12-20.
doi: 10.3390/ijerph2004010012 URL |
[8] | Yang ZG, Jiang WK, Wang XH, et al. An amidase gene, ipaH, is responsible for the initial step in the iprodione degradation pathway of Paenarthrobacter sp. strain YJN-5[J]. Appl Environ Microbiol, 2018, 84(19): e01150-e01118. |
[9] |
Verdenelli RA, Lamarque AL, Meriles JM. Short-term effects of combined iprodione and vermicompost applications on soil microbial community structure[J]. Sci Total Environ, 2012, 414: 210-219.
doi: 10.1016/j.scitotenv.2011.10.066 URL |
[10] | 汪震, 华修德, 施海燕, 等. 异菌脲在油菜植株、土壤和水中的代谢途径及代谢物3, 5-DCA的毒性研究[J]. 生态毒理学报, 2022, 17(4): 378-385. |
Wang Z, Hua XD, Shi HY, et al. Studies on metabolic pathways of iprodione in rape plant, soil, and water and toxicity of metabolite 3,5-DCA[J]. Asian J Ecotoxicol, 2022, 17(4): 378-385. | |
[11] | 杨正中. 异菌脲降解菌的分离鉴定、降解特性及降解途径研究[D]. 南京: 南京农业大学, 2016. |
Yang ZZ. Isolation & characterization of an iprodione-degrading strain and its degradation pathway[D]. Nanjing: Nanjing Agricultural University, 2016. | |
[12] |
Cao L, Shi WH, Shu RD, et al. Isolation and characterization of a bacterium able to degrade high concentrations of iprodione[J]. Can J Microbiol, 2018, 64(1): 49-56.
doi: 10.1139/cjm-2017-0185 pmid: 29219613 |
[13] |
Athiel P, Alfizar, Mercadier C, et al. Degradation of iprodione by a soil Arthrobacter-like strain[J]. Appl Environ Microbiol, 1995, 61(9): 3216-3220.
doi: 10.1128/aem.61.9.3216-3220.1995 URL |
[14] |
Mercadier C, Vega D, Bastide J, et al. Iprodione degradation by isolated soil microorganisms[J]. FEMS Microbiol Ecol, 1997, 23(3): 207-215.
doi: 10.1111/j.1574-6941.1997.tb00403.x URL |
[15] | 曹礼, 舒润东, 石文红, 等. 一株降解异菌脲菌株的鉴定及响应面分析法优化其培养条件[J]. 食品工业科技, 2017, 38(6): 168-173, 178. |
Cao L, Shu RD, Shi WH, et al. Identification of an iprodione-degrading strain and optimization of the culture condition by response surface analysis method[J]. Sci Technol Food Ind, 2017, 38(6): 168-173, 178. | |
[16] |
Campos M, Karas PS, Perruchon C, et al. Novel insights into the metabolic pathway of iprodione by soil bacteria[J]. Environ Sci Pollut Res Int, 2017, 24(1): 152-163.
doi: 10.1007/s11356-016-7682-1 URL |
[17] | 杨正中, 吴广, 金文, 等. 异菌脲降解菌YJN-G的分离、鉴定及降解特性[J]. 应用与环境生物学报, 2017, 23(1): 164-168. |
Yang ZZ, Wu G, Jin W, et al. Isolation, identification and characterization of an iprodione-degrading strain YJN-G[J]. Chin J Appl Environ Biol, 2017, 23(1): 164-168. | |
[18] | 李艳. 三七种植区土壤农药残留特征及微生物修复研究[D]. 贵阳: 贵州大学, 2018. |
Li Y. Characteristics of pesticide residues and microbial remediation in soil of Panax notoginseng growing areas[D]. Guiyang: Guizhou University, 2018. | |
[19] |
Pan H, Zhou J, Dawa ZM, et al. Diversity of culturable bacteria isolated from highland barley cultivation soil in Qamdo, Tibet Autonomous Region[J]. Pol J Microbiol, 2021, 70(1): 87-97.
doi: 10.33073/pjm-2021-008 pmid: 33815530 |
[20] |
Yoon SH, Ha SM, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. Int J Syst Evol Microbiol, 2017, 67(5): 1613-1617.
doi: 10.1099/ijsem.0.001755 URL |
[21] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[22] | 潘虎. 气相色谱-串联质谱法测定蔬菜、土壤和水中异菌脲及其代谢产物的残留量[J]. 西藏农业科技, 2022, 44(1): 60-65. |
Pan H. Determination of iprodione and its metabolites residues in vegetables, soil and water by gas chromatography-tandem mass spectrometry[J]. Tibet J Agric Sci, 2022, 44(1): 60-65. | |
[23] | 刘茜, 张宪, 陈敏, 等. 嘧菌环胺·异菌脲可湿性粉剂在葡萄和土壤中的残留消解动态及风险评估[J]. 农产品质量与安全, 2021(2): 30-35, 41. |
Liu Q, Zhang X, Chen M, et al. Residue dissipation and dietary risk assessment of cyprodinil and iprodione wettable powder in grape and soil[J]. Qual Saf Agro Prod, 2021(2): 30-35, 41. | |
[24] |
Zadra C, Cardinali G, Corte L, et al. Biodegradation of the fungicide iprodione by Zygosaccharomyces rouxii strain DBVPG 6399[J]. J Agric Food Chem, 2006, 54(13): 4734-4739.
doi: 10.1021/jf060764j URL |
[25] |
Zhang ML, Ren YJ, Jiang WK, et al. Comparative genomic analysis of iprodione-degrading Paenarthrobacter strains reveals the iprodione catabolic molecular mechanism in Paenarthrobacter sp. strain YJN-5[J]. Environ Microbiol, 2021, 23(2): 1079-1095.
doi: 10.1111/emi.v23.2 URL |
[26] | 袁浩亮, 龙泽东, 孙梅, 等. 国际土壤酸化研究知识图谱分析[J]. 土壤通报, 2022, 53(4): 989-997. |
Yuan HL, Long ZD, Sun M, et al. Knowledge map of international research on soil acidification[J]. Chin J Soil Sci, 2022, 53(4): 989-997. |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[4] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[5] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[6] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[7] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[8] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[9] | 张傲洁, 李青云, 宋文红, 颜少慧, 唐爱星, 刘幽燕. 基于苯酚降解的粪产碱杆菌Alcaligenes faecalis JF101的全基因组分析[J]. 生物技术通报, 2023, 39(10): 292-303. |
[10] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[11] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[12] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[13] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[14] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[15] | 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||