生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 272-278.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1224
王梦婷(), 曹杰宇, 王忠新, 王雅瑜, 杨大佐, 周一兵, 赵欢()
收稿日期:
2020-09-30
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
王梦婷,女,硕士研究生,研究方向:水产养殖;E-mail: 基金资助:
WANG Meng-ting(), CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan()
Received:
2020-09-30
Published:
2021-06-26
Online:
2021-07-08
摘要:
MicroRNAs(miRNAs)是一类由内源基因编码具有多种功能的短序列非编码RNA,miRNA参与生物体细胞凋亡、生长发育及代谢等多个生命活动。近年来已有研究表明当机体暴露于环境污染物(如重金属、有机污染物和新型污染物等)时,miRNA表达的改变可以影响靶基因的表达,进而调控生物机体对外源污染物胁迫下的毒性响应。综述了水生动物中参与不同环境污染物胁迫的miRNA及其作用机制的研究进展,对miRNA今后的研究方向进行讨论和展望,希望为miRNA参与水生动物抗逆性的研究提供一定的参考。
王梦婷, 曹杰宇, 王忠新, 王雅瑜, 杨大佐, 周一兵, 赵欢. MicroRNA参与水生动物环境污染物胁迫应答的研究进展[J]. 生物技术通报, 2021, 37(6): 272-278.
WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants[J]. Biotechnology Bulletin, 2021, 37(6): 272-278.
[1] |
Choudhuri S. Small noncoding RNAs:biogenesis, function, and emerging signifificance in toxicology[J]. Biochem Mol Toxicol, 2010, 24:195-216.
doi: 10.1002/(ISSN)1099-0461 URL |
[2] | Lee Y, Jeon K, Lee JT, et al. Micro RNA maturation:stepwise processing and subcellular localization[J]. EMBO, 2002, 21(17):4663-4670. |
[3] |
Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-micro RNAs and short hairpin RNAs[J]. Genes Dev, 2003, 17(24):3011-3016.
doi: 10.1101/gad.1158803 URL |
[4] |
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates micro RNA processing[J]. Nature, 2003, 425(6956):415-419.
doi: 10.1038/nature01957 URL |
[5] |
Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326 |
[6] |
Carthew RW. Gene regulation by microRNAs[J]. Curr Opin Genet Dev, 2006, 16(2):203-208.
doi: 10.1016/j.gde.2006.02.012 URL |
[7] |
Jalali S, Ramanathan GK, Parthasarathy PT, et al. Mir-206 regulates pulmonary artery smooth muscle cellproliferation and differentiation[J]. PLoS One, 2012, 7(10):e46808.
doi: 10.1371/journal.pone.0046808 URL |
[8] |
Yuan J, Xiao G, Peng G, et al. Mi RNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ[J]. Biochemical and Biophysical Research Communications, 2015, 457(2):171-176.
doi: 10.1016/j.bbrc.2014.12.078 URL |
[9] |
Kang D, Skalsky RL, Cullen BR. Micro RNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival[J]. PLoS Pathog, 2015, 11(6):e1004979.
doi: 10.1371/journal.ppat.1004979 URL |
[10] |
O’Connell RM, Rao DS, Baltimore D. Micro RNA regulation of inflammatory responses[J]. Annual Review of Immunology, 2012, 30:295-312.
doi: 10.1146/annurev-immunol-020711-075013 URL |
[11] |
Tate R, Rotondo D, Davidson J. Regulation of lipid metabolism by micro RNAs[J]. Current Opinion in Lipidology, 2015, 26(3):243-244.
doi: 10.1097/MOL.0000000000000186 URL |
[12] |
Fabbri M, Urani C, Sacco MG, et al. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium[J]. ALTEX, 2012, 29:173-182.
doi: 10.14573/altex URL |
[13] |
Bao YB, Zhang LL, Dong YH, et al. Identification and comparative analysis of the Tegillarca granosa haemocytes microRNA transcriptome in response to Cd using a deep sequencing approach[J]. PLoS One, 2014, 9(4):e93619.
doi: 10.1371/journal.pone.0093619 URL |
[14] |
Chen S, Garrett J, McKinney GJ, et al. Novel cadmium responsive microRNAs in Daphnia pulex[J]. Environ Sci Technol, 2015, 49(24):14605-14613.
doi: 10.1021/acs.est.5b03988 URL |
[15] |
Chen S, Nichols KM, Poynton HC, et al. Sepúlveda. MicroRNAs are involved in cadmium tolerance in Daphnia pulex[J]. Aquatic Toxicology, 2016, 175:241-248.
doi: 10.1016/j.aquatox.2016.03.023 URL |
[16] | Liu Q, Yang J, Gong YF, et al. MicroRNA profiling identifies biomarkers in head kidneys of common carp exposed to cadmium[J]. Chemosphere, 2020, 5(247):901-930. |
[17] | Qiang J, Tao YF, He J, et al. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia(GIFT, Oreochromis niloticus)exposed to cadmium by directly targeting a metallothionein gene[J]. Aquatic Toxicology, 2017, 1(182):39-48. |
[18] | Guo H, Lu ZC, Zhu XW, et al. Difffferential expression of microRNAs in hemocytes from white shrimp Litopenaeus vannamei under copper stress[J]. Fish and Shellfifish Immunology, 2017, 9(74):152-161. |
[19] | 张晶晶, 李宏俊, 秦艳杰, 等. 基于鳃的miRNA转录组研究中国蛤蜊对重金属镉的响应[J]. 海洋学报, 2016, 38(12):118-131. |
Zhang JJ, Li HJ, Qin YJ, et al. Identification and differential expression of gill microRNA in the Chinese surf clam(Mactra chinensis)with Cd2+ exposure [J]. Acta Oceanologica Sinica, 2016, 38(12):118-131. | |
[20] | 王菊, 赵建军, 马旭. 丙烯酰胺对斑马鱼胚胎发育过程中microRNA 表达的影响[J]. 毒理学杂志, 2017, 21(3):169-171. |
Wang J, Zhao JJ, Ma X. Effects of acrylamide on the expression of microRNA in zebrafish development[J]. Journal of Toxicology, 2017, 21(3):169-171. | |
[21] |
Wu M, Wu D, Wang C, et al. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2. 5[J]. Hazard Mater, 2016, 302:304-313.
doi: 10.1016/j.jhazmat.2015.10.004 URL |
[22] |
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos[J]. Toxicol Appl Pharmacol, 2012, 264:262-273.
doi: 10.1016/j.taap.2012.08.007 URL |
[23] |
Ju L, Zhou Z, Jiang B, et al. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls[J]. Environ Sci Pollut Res, 2017, 24:886-891.
doi: 10.1007/s11356-016-7874-8 URL |
[24] |
Zhang L, Li YY, Zeng HZ, et al. MicroRNA expression changes during zebrafifish development induced by perflfluorooctane sulfonate[J]. Appl Toxicol, 2011, 31:210-222.
doi: 10.1006/faat.1996.0093 URL |
[25] |
Huang HN, Zhang K, Zhou YY, et al. MicroRNA-155 targets cyb561d2 in zebrafish in response to fipronil exposure[J]. Environ Toxicol, 2016, 31(7):877-886.
doi: 10.1002/tox.v31.7 URL |
[26] |
Zhou Y, Huang H, Zhang K, et al. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure[J]. Environ Toxicol Pharmacol, 2016, 45:98-107.
doi: 10.1016/j.etap.2016.05.019 URL |
[27] | Wang X, Zhou S, Ding X, et al. Effect of triazophos, fipronil and their mixture on miRNA expression in adult zebrafish[J]. Environ Sci Health Part B, 2010, 45:648-657. |
[28] |
Jia L, Zhang D, Huang H, et al. Triazophos-induced toxicity in zebrafish:miRNA-217 inhibits nup43[J]. Toxicol Res, 2018, 7:913-922.
doi: 10.1039/C8TX00065D URL |
[29] |
Renaud L, Silveira WA, Hazard ES, et al. The plasticizer bisphenol a perturbs the hepatic epigenome:a systems level analysis of the miRNome[J]. Genes, 2017, 8(10):269-308.
doi: 10.3390/genes8100269 URL |
[30] | Lee JY, Kho YL, Kim YL, et al. Exposure to bisphenol S alters the expression of microRNA in male zebrafish[J]. Toxicology and Applied Pharmacology, 2018, 1(338):191-196. |
[31] |
Zhang QL, Dong ZX, Xiong Y, et al. Genome-wide transcriptional response of microRNAs to the benzo(a)pyrene stress in amphioxus Branchiostoma belcheri[J]. Chemosphere, 2019, 3(218):205-210.
doi: 10.1016/0045-6535(74)90007-1 URL |
[32] | 洪响声. 稀有鮈鲫micro RNA的鉴定及在水生态毒理学上的初步应用[D]. 武汉:华中农业大学, 2016. |
Hong XS. Identification and preliminary application of microRNAs of Chinese rare minnow(Gobiocypris Rarus)in aquatic ecotoxicology[D]. Wuhan:Huazhong Agricultural University, 2016. | |
[33] | 王芳. 黄河鲤卵巢发育相关miRNA的鉴定及生物学功能的初步研究[D]. 新乡:河南师范大学, 2018. |
Wang F. Identification and biological function analysis of microRNA related to ovarian development of yellow river carp(Cyprinus carpio)[D]. Xinxiang:Henan Normal University, 2018. | |
[34] | 尹双, 代燕辉, 徐立娜, 等. 海洋酸化条件下重金属和金属纳米颗粒的环境行为及其对海洋生物的影响[J]. 中国科学:化学, 2018, 48(3):256-265. |
Yin S, Dai YH, Xu LN, et al. Environmental behaviors and toxicity of heavy metals and metallic nanoparticles to marine organisms under ocean acidification[J]. Scientia Sinica:Chimica, 2018, 48(3):256-265.
doi: 10.1360/N032017-00146 URL |
|
[35] |
Hu M, Jovanović B, Palić D. In silico prediction of MicroRNA role in regulation of Zebrafish(Danio rerio)responses to nanoparticle exposure[J]. Toxicol, 2019, 60:187-202.
doi: 10.1016/0300-483X(90)90142-4 URL |
[36] |
Hu H, Shi Y, Zhang Y, et al. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg[J]. Sci Total Environ, 2017, 607-608:795-805.
doi: 10.1016/j.scitotenv.2017.07.036 URL |
[37] |
Martinez R, Vera-Chang MN, Haddad M, et al. Developmental fluoxetine exposure in zebrafish reduces offspring basal cortisol concentration via life stage-dependent maternal transmission[J]. PLoS One, 2019, 14:e0212577.
doi: 10.1371/journal.pone.0212577 URL |
[38] |
Lin J, Wang C, Liu J, et al. Up-stream mechanisms for up-regulation of miR-125b from triclosan exposure to zebrafish(Danio rerio)[J]. Aquat Toxicol, 2017, 193:256-267.
doi: 10.1016/j.aquatox.2017.10.021 URL |
[39] |
Wang X, Zheng Y, Ma Y, et al. Lipid metabolism disorder induced by up-regulation of miR-125b and miR-144 following β-diketone antibiotic exposure to F0-zebrafish(Danio rerio)[J]. Ecotoxicol Environ Saf, 2018, 164:243-252.
doi: 10.1016/j.ecoenv.2018.08.027 URL |
[40] |
Craig PM, Trudeau VL, Moon TW. Profiling hepatic microRNAs in zebrafish:fluoxetine exposure mimics a fasting response that targets AMP-activated protein kinase(AMPK)[J]. PLoS One, 2014, 9:e95351.
doi: 10.1371/journal.pone.0095351 URL |
[41] |
Liu J, Xiang C, Huang W, et al. Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish(Danio rerio)[J]. Aquat Toxicol, 2019, 206:176-185.
doi: 10.1016/j.aquatox.2018.11.017 URL |
[42] |
Aluru N, Deak KL, Jenny MJ, et al. Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish[J]. Neurotoxicol Teratol, 2013, 40:46-58.
doi: 10.1016/j.ntt.2013.10.001 URL |
[43] |
Li J, Liu J, Zhang Y, et al. Screening on the differentially expressed miRNAs in zebrafish(Danio rerio)exposed to trace β-diketone antibiotics and their related functions[J]. Aquat Toxicol, 2016, 178:27-38.
doi: 10.1016/j.aquatox.2016.07.009 URL |
[44] |
Duan J, Yu Y, Li Y, et al. Comprehensive understanding of PM2. 5 on gene and microRNA expression patterns in zebrafish(Danio rerio)model[J]. Sci Total Environ, 2017, 586:666-674.
doi: 10.1016/j.scitotenv.2017.02.042 URL |
[45] | Beate H, Stefan P, Martin, et al. MiR-21 is required for efficient kidney regeneration in fish[J]. Developmental Biology, 2015, 15:43. |
[1] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[2] | 张廷焕, 龙熙, 郭宗义, 柴捷. miR-378促进脂质生成相关靶基因鉴定[J]. 生物技术通报, 2021, 37(2): 80-87. |
[3] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[4] | 赵岩, 曹晓颖, 周昊天, 宋凌元, 涂翰卿, 黄思颖, 赵金良. 鳜不同孵化时期miRNA转录组分析及生长相关miRNA鉴定[J]. 生物技术通报, 2018, 34(8): 181-189. |
[5] | 谢洁 ,王明 ,李青 ,潘妃 ,熊兴耀 ,秦玉芝. 植物miR390的研究进展[J]. 生物技术通报, 2018, 34(6): 1-10. |
[6] | 李宇鹏,张一鸣,胡海碧,康成宇,李牧洲,郭志云. 肝癌细胞HepG2中p53调控miRNA-3661的生物信息分析与功能验证[J]. 生物技术通报, 2017, 33(7): 216-223. |
[7] | 张泽雄, 刘红艳, 邢贺, 马钰. 漆酶可降解底物种类的研究进展[J]. 生物技术通报, 2017, 33(10): 97-102. |
[8] | 杨亚蓝, 郭志云, 丁若凡, 茆灿泉, 郭建秀, 熊莉丽. 阿霉素诱导下的肝癌细胞HepG2中微小RNA差异表达分析[J]. 生物技术通报, 2016, 32(6): 244-249. |
[9] | 刘伟灿,周永刚,王兴超,王法微,王南,董园园,李晓薇,李海燕. 植物MicroRNA介导的基因调控在作物改良中的应用潜能[J]. 生物技术通报, 2016, 32(4): 6-15. |
[10] | 齐仁立, 黄金秀, 龙定彪, 黄萍. MicroRNA与NF-κB调控的细胞凋亡[J]. 生物技术通报, 2015, 31(5): 27-31. |
[11] | 王维,张玉娟,陈洁,刘聚波,夏民旋,沈法富. 植物逆境胁迫相关miRNA研究进展[J]. 生物技术通报, 2015, 31(1): 1-10. |
[12] | 齐仁立, 黄金秀, 杨飞云, 刘作华. 细胞凋亡中MicroRNA的调控作用[J]. 生物技术通报, 2014, 0(7): 20-25. |
[13] | 刘凤霞, 张盼盼, 李建勇, 郑树涛, 卢晓梅, 刘文亚. MicroRNA-21通过正调控ERK1/2通路促进食管鳞状 细胞癌的增殖和迁移[J]. 生物技术通报, 2013, 0(12): 189-193. |
[14] | 王雁,汤纳平,邱云良,南雅萍,马璟. 血浆/血清MicroRNAs定量分析的校正策略[J]. 生物技术通报, 2013, 0(10): 52-57. |
[15] | 刘震西;蓝兴国;康瑞霞;李玉花;. 内源小RNAs的生物合成及其在植物发育中的作用[J]. , 2012, 0(04): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||