生物技术通报 ›› 2018, Vol. 34 ›› Issue (6): 1-10.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1093
• 综述与专论 • 下一篇
谢洁1 ,王明1 ,李青1 ,潘妃4 ,熊兴耀3 ,秦玉芝1,2
收稿日期:
2017-12-20
出版日期:
2018-06-26
发布日期:
2018-07-03
作者简介:
谢洁,女,硕士研究生,研究方向:逆境下马铃薯MicroRNA与靶基因的互作关系;E-mail:358562505@qq.com
基金资助:
XIE Jie1 ,WANG Ming1 ,LI Qing1 ,PAN Fei4 ,XIONG Xing-yao3 ,QIN Yu-zhi1,2
Received:
2017-12-20
Published:
2018-06-26
Online:
2018-07-03
摘要: MicroRNAs(miRNAs)是真核生物中一类非编码内源小分子RNA,它通过对靶mRNA的剪切或抑制靶mRNA的翻译来调控基因的表达,从而对靶基因实施转录后水平调控,在植物器官形成、生长发育、信号转导及非生物胁迫应答等过程起重要作用。MicroRNA390(miR390)家族是一个古老的高度保守的家族,其主要的靶基因AGO7是RNA沉默复合体的重要组成成分,广泛参与对靶miRNA的剪切,可能在植物的生长发育、侧生器官极性形成、花器官形成及胁迫等方面有重要作用,但是目前对miR390的研究主要集中在植物生长发育方面,在非生物逆境胁迫应答方面鲜有报道。综述了miR390的发现及其在植物中的类型、miR390家族的形成过程及miR390参与植物的生长发育过程和响应重金属、干旱、盐、低温等非生物胁迫的作用,同时对miRNAs功能研究手段作了展望,有利于进一步综合了解miR390的研究概况及对miR390参与非生物胁迫的研究。
谢洁 ,王明 ,李青 ,潘妃 ,熊兴耀 ,秦玉芝. 植物miR390的研究进展[J]. 生物技术通报, 2018, 34(6): 1-10.
XIE Jie ,WANG Ming ,LI Qing ,PAN Fei ,XIONG Xing-yao ,QIN Yu-zhi. Research Progress on Plant miR390[J]. Biotechnology Bulletin, 2018, 34(6): 1-10.
[1] 魏强, 梁永宏, 李广林. 植物miRNA的进化[J] . 遗传, 2013, 35(3):315-323. [2] Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses[J] . Trends in Plant Science, 2012, 17(4):196-203. [3] Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J] . Biochimica Et Biophysica Acta, 2012, 1819(2):137-148. [4] Sunkar R. MicroRNAs with macro-effects on plant stress responses[J] . Seminars in Cell & Developmental Biology, 2010, 21(8):805-811. [5] Xia R, Xu J, Meyers BC. The emergence, evolution, and diversifica-tion of the miR390-TAS3-ARF pathway in land plants[J] . Plant Cell, 2017, 29(6):1232-1247. [6] Wu G. Plant MicroRNAs and development[J] . 遗传学报, 2013, 40(5):217-230. [7] Karlsson P, Christie MD, Seymour DK, et al. KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1[J] . Proc Natl Acad Sci USA, 2015, 112(45):14096-14101. [8] 马智明, 曹家树. 动植物microRNA的起源、合成及作用模式[J] . 中国细胞生物学学报, 2016(7):857-863. [9] Allen E, Xie Z, Gustafson AM, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J] . Cell, 2005, 121(2):207-221. [10] Leor W, Carles CC, Osmont KS, et al. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the arabidopsis[J] . Proc Natl Acad Sci USA, 2005, 102(27):9703-9708. [11] Gustafson AM, Allen E, Givan S, et al. ASRP:the Arabidopsis small RNA project database[J] . Nucleic Acids Res, 2005, 33(Database issue):D637-640. [12] Baev V, Milev I, Naydenov M, et al. Implementation of a De novo genome-wide computational approach for updating Brachypodium miRNAs[J] . Genomics, 2011, 97(5):282-293. [13] Clepet C. RNA captor:A tool for RNA characterization[J] . PLoS One, 2011, 6(4):e18445. [14] Garciamas J, Benjak A, Sanseverino W, et al. The genome of melon(Cucumis melo L.)[J] . Proc Natl Acad Sci USA, 2012, 109(29):11872-11877. [15] Sunkar R, Girke T, Jain PK, et al. Cloning and characterization of microRNAs from rice[J] . Plant Cell, 2005, 17(5):1397-1411. [16] Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J] . Science, 2006, 313(5793):1596-1604. [17] Arazi T, Talmorneiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss[J] . Plant Journal for Cell & Molecular Biology, 2005, 43(6):837-848. [18] Talmor-Neiman M, Stav R, Frank W, et al. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss[J] . Plant Journal for Cell & Molecular Biology, 2006, 47(1):25-37. [19] Jagadeeswaran G, Zheng Y, Li YF, et al. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families[J] . New Phytologist, 2009, 184(1):85-98. [20] Khan Barozai MY, Irfan M, Yousaf R, et al. Identification of micro-RNAs in cotton[J] . Plant Physiology & Biochemistry Ppb, 2008, 46(8-9):739-751. [21] Lu S, Sun Y, Amerson HV. MicroRNAs in loblolly pine(Pinus taeda L.)and their association with fusiform rust gall development[J] . Plant Journal for Cell & Molecular Biology, 2007, 51(6):1077-1098. [22] Wang L, Wang MB, Tu JX, et al. Cloning and characterization of microRNAs from Brassica napus[J] . Febs Letters, 2007, 581(20):3848-3856. [23] Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J] . Nature, 2007, 449(7161):463-467. [24] Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots[J] . BMC Genomics, 2008, 9(1):160-173. [25] Wong CE, Zhao YT, Wang XJ, et al. MicroRNAs in the shoot apical meristem of soybean[J] . J Exp Bot, 2011, 62(8):2495-2506. [26] Turner M, Yu O, Subramanian S. Genome organization and characteristics of soybean microRNAs[J] . BMC Genomics, 2012, 13(1):169-184. [27] Kravchik M, Sunkar R, Damodharan S, et al. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant[J] . J Exp Bot, 2014, 65(2):725-739. [28] Jiang J, Lv M, Liang Y, et al. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis[J] . BMC Genomics, 2014, 15(1):146-158. [29] Jia J, Zhao S, Kong X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J] . Nature, 2013, 496(7443):91-95. [30] Project AG. The Amborella genome and the evolution of flowering plants[J] . Science, 2013, 342(6165):1241089. [31] Zhang LF, Chia JM, Kumari S, et al. A genome-wide characterization of microRNA genes in maize[J] . PLoS Genetics, 2009, 5(11):e1000716. [32] Song CN, Fang JG, Li XY, et al. Identification and characterization of 27 conserved microRNAs in citrus[J] . Planta, 2009, 230(4):671-685. [33] Zeng C, Wang W, Zheng Y, et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants[J] . Nucleic Acids Res, 2010, 38(3):981-995. [34] Fahlgren N, Jogdeo S, Kasschau KD, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana[J] . Plant Cell, 2010, 22(4):1074-1089. [35] Argout X, Salse J, Aury JM, et al. The genome of Theobroma cacao[J] . Nature Genetics, 2011, 43(2):101-108. [36] De Paola D, Cattonaro F, Pignone D, et al. The miRNAome of globe artichoke:conserved and novel micro RNAs and target analysis[J] . BMC Genomics, 2012, 13:41. [37] Barvkar VT, Pardeshi VC, Kale SM, et al. Genome-wide identification and characterization of microRNA genes and their targets in flax(Linum usitatissimum):Characterization of flax miRNA genes[J] . Planta, 2013, 237(4):1149-1161. [38] She T, Yu W, Li Z, et al. Identification of wounding and topping responsive small RNAs in tobacco(Nicotiana tabacum)[J] . BMC Plant Biol, 2012, 12(1):28-45. [39] Wan LC, Zhang H, Lu S, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata[J] . BMC Genomics, 2012, 13(1):132-142. [40] Barozai MY, Baloch IA, Din M. Identification of MicroRNAs and their targets in Helianthus[J] . Molecular Biology Reports, 2012, 39(3):2523-2532. [41] Xia R, Zhu H, An Y, et al. Apple miRNAs and tasiRNAs with novel regulatory networks[J] . Genome Biology, 2012, 13(6):R47. [42] Patanun O, Lertpanyasampatha M, Sojikul P, et al. Computational identification of microRNAs and their targets in cassava(Manihot esculenta Crantz.)[J] . Molecular Biotechnology, 2013, 53(3):257-269. [43] De LA, Markmann K, Cognat V, et al. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus[J] . Plant Physiology, 2012, 160(4):2137-2154. [44] Zhang R, Marshall D, Bryan GJ, et al. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing[J] . PLoS One, 2013, 8(2):e57233. [45] Zhu H, Xia R, Zhao B, et al. Unique expression, processing regulation, and regulatory network of peach(Prunus persica)miRNAs[J] . BMC Plant Biol, 2012, 12(1):149-166. [46] Rishi A, Yang X, Yu Q, et al. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya[J] . BMC Genomics, 2012, 13(1):682-695. [47] Garcia D, Collier S, Byrne MR. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway[J] . Current Biology, 2006, 16(9):933-938. [48] Sunkar R, Girke T, Jian PK. Cloning and characterization of micro-RNAs from rice[J] . Plant Cell, 2005, 17(5):1397-1411. [49] Wang J, Gao X, Li L, et al. Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice[J] . J Exp Bot, 2010, 61(6):1885-1895. [50] 梅梅, 王晓禹, 张晓林, 等. 植物生长素响应因子ARF研究进展[J] . 种子, 2017, 36(1):47-54. [51] Montgomery TA, Howell MD, Cuperus JT, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation[J] . Cell, 2008, 133(1):128-141. [52] Garcia D. A miRacle in plant development:role of microRNAs in cell differentiation and patterning[J] . Seminars in Cell Developmental Biology. 2008, 19(6):586-595. [53] Fahlgren N, Montgomery TA, Howell MD, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis[J] . Current Biology Cb, 2006, 16(9):939-944. [54] Santin F, Bhogale S, Fantino E, et al. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development[J] . Physiologia Plantarum, 2016, 159(2):244-261. [55] Zhao YT, Wang M, Fu SX, et al. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production-and development-correlated expression and new small RNA classes[J] . Plant Physiology, 2012, 158(2):813-823. [56] Cho SH, Coruh C, Axtell MJ. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens[J] . Plant Cell, 2012, 24(12):4837-4849. [57] Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets[J] . Cell, 2002, 110(4):513-520. [58] Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth[J] . Plant Cell, 2010, 22(4):1104-1117. [59] 于丽丽, 刘伟伟, 方媛, 等. 番茄LemiR390及其预测靶基因LeTAS3的鉴定与表达分析[J] . 园艺学报, 2015, 42(2):271-279. [60] Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J] . Biochimica Et Biophysica Acta, 2012, 1819(2):137-148. [61] Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J] . Journal of Plant Physiology, 2007, 164(10):1346-1357. [62] 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展[J] . 生态学报, 2000, 20(3):514-523. [63] Ding Y, Zhen C, Cheng Z. Microarray-based analysis of cadmium-responsive microRNAs in rice(Oryza sativa)[J] . J Exp Bot, 2011, 62(10):3563-3573. [64] 曹玉婷, 丁艳菲, 朱诚. 类受体蛋白激酶与植物非生物胁迫应答[J] . 中国生物化学与分子生物学报, 2014, 30(3):241-247. [65] 丁艳菲. 水稻镉胁迫应答相关microRNA的分离与功能研究[D] . 杭州:浙江大学, 2012. [66] 丁艳菲, 刘海丽, 朱诚, 等. 水稻miR390在增加植物镉胁迫敏感性中的应用:中国, 102250902 A[P] . 2011. [67] Ding Y, Ye Y, Jiang Z, et al. MicroRNA390 Is Involved in cadmium tolerance and accumulation in rice[J] . Front Plant Sci, 2016, 7(127)235-244. [68] Zhou ZS, Zeng HQ, Liu ZP, et al. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal[J] . Plant Cell & Environment, 2012, 35(1):86-99. [69] 刘凉琴, 宋爱萍, 张永侠, 等. 马蔺根系响应Cd胁迫的miRNA高通量测序分析[J] . 植物资源与环境学报, 2016, 25(3):1-11. [70] Lequeux H, Hermans C, Lutts S, et al. Response to copper excess in Arabidopsis thaliana:Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile[J] . Plant Physiol Biochem. 2010, 48(8):673-682. [71] 肖莉, 刘春, 向世鹏, 等. MicroRNAs在植物响应金属毒性中的作用[J] . 衡阳师范学院学报, 2013, 34(3):113-117. [72] Dmitriev AA, Kudryavtseva AV, Bolsheva NL, et al. miR319, miR390, and miR393 are involved in aluminum response in flax(Linum usitatissimum L.)[J] . Biomed Research International, 2017:4975146. [73] Chen X. Small RNAs in development-insights from plants[J] . Curr Opin Genet Dev, 2012, 22(4):361-367. [74] Liu QP, Zhang HM. Molecular identification and analysis ofarsenite stress-responsive miRNAs in rice[J] . J Agric Food Chem, 2012, 60(26):6524-6536. [75] Zhang J, Zhang S, Han S, et al. Genome-wide identification ofmicroRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis[J] . Planta, 2012, 236(2):647-657. [76] Zhou ZS, Song JB, Yang ZM, et al. Genome-wideidentification of Brassica napus microRNAs and their targets in response to cadmium[J] . J Exp Bot, 2012, 63(12):4597-4613. [77] 宋顺. 木薯抗旱相关microRNA差异表达分析[D] . 海南:海南大学, 2010. [78] Chen Q, Li M, Zhang Z, et al. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco[J] . BMC Genomics, 2017, 18(1):62-77. [79] Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth[J] . Plant Cell, 2010, 22(4):1104-1117. [80] 吴冰月, 宋普文, 陈华涛, 等. 2个大豆RNA依赖的RNA聚合酶基因和的克隆与分析[J] . 南京农业大学学报, 2014, 37(3):27-34. [81] Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species[J] . BMC Plant Biol, 2008, 8(1):37-49. [82] 李贺, 毛健鑫, 戚华彩, 等. 草莓miR390基因及其启动子的鉴定与表达分析[J] . 果树学报, 2014, 31(3):362-369. [83] 翟立红. 玉米冠根和雄穗中microRNA及Argonaute基因表达的研究[D] . 湖北:华中农业大学, 2013. [84] 王宝山, 邹琦. NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J] . 植物生理学报, 2000, 26(3):181-188. [85] 郭兆奎. 烟草吸钾相关基因克隆与表达调控研究[D] . 哈尔滨:哈尔滨工业大学, 2008. [86] 王波. 拟南芥和盐生植物灰绿藜液泡膜焦磷酸酶基因与TIR1基因表达相关性分析[D] . 乌鲁木齐:新疆大学, 2007. [87] 佐拉. 野生大麦与栽培大麦耐盐性的生理及遗传差异研究[D] . 杭州:浙江大学, 2014. [88] 薄维平. 木薯耐寒相关microRNA的差异表达分析[D] . 海南:海南大学, 2010. [89] 党春艳. 高山离子芥低温胁迫调控的miRNAs及其靶基因的表达分析[D] . 兰州:兰州大学, 2013. [90] 孙润泽, 侯琦, 章文乐, 等. 甜杨低温响应microRNAs的克隆与分析[J] . 基因组学与应用生物学, 2011, 30(2):204-211. [91] Zhang W, GaoS, Zhou X, Chellappan P, et al Bacteria -responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J] . Plant Molecular Biology, 2011, 75:93-105. [92] Moldovan D, Spriggs A, Yang J, et al. Hypoxia -responsive microRNAs and transacting small interfering RNAs in Arabidopsis[J] . J Exp Bot, 2010, 61:165 -177. [93] Huo X, Wang C, Teng Y, et al. Identification of miRNAs associated with dark-induced senescence in Arabidopsis[J] . BMC Plant Biol, 2015, 15(1):266-277. [94] 乔岩. 马铃薯光诱导糖苷生物碱代谢相关miRNAs的鉴定与功能分析[D] . 兰州:甘肃农业大学, 2017. [95] 李贺, 毛健鑫, 戚华彩, 等. 草莓miR390基因及其启动子的鉴定与表达分析[J] . 果树学报, 2014, 31(3):362-336. [96] Yoon EK, Yang JH, Lim J, et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development[J] . Nucleic Acids Res, 2010, 38:1382-1391. |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[5] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[6] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[7] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[8] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[9] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[10] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[11] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[12] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[13] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[14] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[15] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||