生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 31-38.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0832
• 青贮微生物专题(专题主编:杨富裕 教授) • 上一篇 下一篇
收稿日期:
2021-06-29
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
江迪,女,博士,讲师,研究方向:生物质资源与饲料资源开发利用;E-mail: 基金资助:
JIANG Di1,2(), XU Chun-cheng2()
Received:
2021-06-29
Published:
2021-09-26
Online:
2021-10-25
摘要:
发酵TMR是根据家畜不同生长阶段的营养需要和饲料原料的营养价值,设计科学合理的日粮配方,经过乳酸菌发酵调制而成的一种营养平衡的日粮。随着我国畜牧业的快速发展,对高品质饲料的需求量越来越大。为了降低对饲料粮的过度依赖,非常规饲料资源的开发利用显得尤为重要。发酵TMR调制加工技术的推广和普及能够有效利用非常规饲料资源,缓解饲料资源短缺制约我国畜牧业稳定发展的难题。而发酵TMR微生物种群多样性对饲料的发酵品质及有氧稳定性都有重要作用。因此,文章从发酵TMR技术的应用、有氧稳定性的微生物影响因素以及发酵TMR中的微生物种群多样性等方面进行综述,讨论了发酵TMR技术的意义以及存在的问题。对发挥发酵TMR的生产潜力,推广发酵TMR饲喂技术,使其高效应用到生产实践中具有重要意义。为提高非常规饲料资源的利用效率,解决饲料资源短缺问题提供了新的解决途径。
江迪, 徐春城. 发酵TMR应用及其微生物种群演替规律研究进展[J]. 生物技术通报, 2021, 37(9): 31-38.
JIANG Di, XU Chun-cheng. Research Progress in the Succession of Microbial Communities in Total Mixed Ration Silage[J]. Biotechnology Bulletin, 2021, 37(9): 31-38.
原料 Raw material | 组成 Composition |
---|---|
精饲料 | 能量饲料(玉米、大麦、高粱等) |
蛋白饲料(豆粕、棉籽粕、菜籽粕等) | |
农产品加工副产物 | 糟渣(啤酒糟、豆腐渣、淀粉渣、米糠、茶渣、果蔬饮料渣等) |
秸秆(稻草、麦秸、玉米秸等) | |
粗饲料 | 青贮饲料(玉米青贮、秸秆青贮、牧草青贮) |
干草(禾本科牧草、豆科牧草等) | |
青绿饲料(青刈饲料等) | |
补充饲料 | 矿物质添加剂 |
维生素添加剂 |
表1 发酵TMR的原料组成
Table 1 Raw material composition of TMR silage
原料 Raw material | 组成 Composition |
---|---|
精饲料 | 能量饲料(玉米、大麦、高粱等) |
蛋白饲料(豆粕、棉籽粕、菜籽粕等) | |
农产品加工副产物 | 糟渣(啤酒糟、豆腐渣、淀粉渣、米糠、茶渣、果蔬饮料渣等) |
秸秆(稻草、麦秸、玉米秸等) | |
粗饲料 | 青贮饲料(玉米青贮、秸秆青贮、牧草青贮) |
干草(禾本科牧草、豆科牧草等) | |
青绿饲料(青刈饲料等) | |
补充饲料 | 矿物质添加剂 |
维生素添加剂 |
种类 Species | 利用乳酸 Assimilated lactate | 发酵糖 Fermented glucose | 来源Detected during | |||
---|---|---|---|---|---|---|
发酵过程Ensiling | 有氧暴露Aerobic exposure | |||||
Candida | C. albicans | s | + | + | + | |
C. bimundalis | + | w | + | + | ||
C. glabrata | - | + | + | + | ||
C. famata | + | s | + | - | ||
C. holmii | s | + | + | + | ||
C. krusei | + | + | + | + | ||
C. lambica | + | + | + | + | ||
C. melinii | w | - | + | + | ||
C. milleri | w | + | + | + | ||
C. silivicola | - | + | + | |||
C. tenuis | s | + | + | + | ||
C. valida | s | w | + | - | ||
C. vini | s | - | + | + | ||
Debaryomyces | D. hansenii | s | s | - | + | |
D. polymorphus | - | s | + | - | ||
Geotrichum | G. candidum | + | w | + | - | |
Guilliermondella | G. selenospora | + | + | + | - | |
Hansenula | H. anomala | + | + | + | + | |
H. canadensis | + | - | + | - | ||
H. polymorpha | - | + | + | - | ||
H. subpelliculosa | + | + | + | - | ||
Pichia | P. burtonii | + | + | - | + | |
P. fermentans | + | + | + | + | ||
P. membranaefaciens | s | s | - | + | ||
Saccharomyces | S. cerevisiae | - | + | + | + | |
S. dairensis | w | + | + | |||
S. exiguus | w | + | + | + | ||
Sporidiobolus | S. salmonicolor | - | - | + | + | |
Zygosaccharomyces | Z. rouxi | - | + | - | + |
表2 发酵过程及有氧状态下的主要酵母
Table 2 Main yeasts during ensiling and aerobic exposure
种类 Species | 利用乳酸 Assimilated lactate | 发酵糖 Fermented glucose | 来源Detected during | |||
---|---|---|---|---|---|---|
发酵过程Ensiling | 有氧暴露Aerobic exposure | |||||
Candida | C. albicans | s | + | + | + | |
C. bimundalis | + | w | + | + | ||
C. glabrata | - | + | + | + | ||
C. famata | + | s | + | - | ||
C. holmii | s | + | + | + | ||
C. krusei | + | + | + | + | ||
C. lambica | + | + | + | + | ||
C. melinii | w | - | + | + | ||
C. milleri | w | + | + | + | ||
C. silivicola | - | + | + | |||
C. tenuis | s | + | + | + | ||
C. valida | s | w | + | - | ||
C. vini | s | - | + | + | ||
Debaryomyces | D. hansenii | s | s | - | + | |
D. polymorphus | - | s | + | - | ||
Geotrichum | G. candidum | + | w | + | - | |
Guilliermondella | G. selenospora | + | + | + | - | |
Hansenula | H. anomala | + | + | + | + | |
H. canadensis | + | - | + | - | ||
H. polymorpha | - | + | + | - | ||
H. subpelliculosa | + | + | + | - | ||
Pichia | P. burtonii | + | + | - | + | |
P. fermentans | + | + | + | + | ||
P. membranaefaciens | s | s | - | + | ||
Saccharomyces | S. cerevisiae | - | + | + | + | |
S. dairensis | w | + | + | |||
S. exiguus | w | + | + | + | ||
Sporidiobolus | S. salmonicolor | - | - | + | + | |
Zygosaccharomyces | Z. rouxi | - | + | - | + |
属水平 Genus | 葡萄糖发酵类型 Glucose fermentation | 种水平 Species |
---|---|---|
Lactobacillus | Homofermentative | L. acidophilus |
L. easei | ||
L. coryniformis | ||
L. curvatus | ||
L. delbriickii | ||
L. graminis | ||
L. helveticus | ||
L. homohiochii | ||
L.jensenii | ||
L. paracasei ssp. paracasei | ||
L. pentosus | ||
L. plantarum | ||
L. salivarius | ||
Heterofermentative | L. brevis | |
L. buehneri | ||
L. collinoides | ||
L. eonfusus | ||
L. divergens | ||
L. fermentum | ||
L. fructosus | ||
L. reuteri | ||
L. viridescens | ||
Pediococcus | Homofermentative | P. aeidilaetici |
P. damnosus | ||
P. inopinatus | ||
P. parvulus | ||
P. pentosaeeus | ||
Leuconostoc | Heterofermentative | Leuc. mesenteraides |
Leuc. oenos | ||
Leuc. paramesenteroides | ||
Enterococcus | Homofermentative | Ec. faecalis |
Ec. faeeium | ||
Lactococcus | Homofermentative | Le. laetis |
Streptococcus | Homofermentative | Sc. bovis |
Weissella | Heterofermentative | W. confusa |
表3 厌氧发酵过程的常见乳酸菌
Table 3 Main lactic acid bacteria during ensiling
属水平 Genus | 葡萄糖发酵类型 Glucose fermentation | 种水平 Species |
---|---|---|
Lactobacillus | Homofermentative | L. acidophilus |
L. easei | ||
L. coryniformis | ||
L. curvatus | ||
L. delbriickii | ||
L. graminis | ||
L. helveticus | ||
L. homohiochii | ||
L.jensenii | ||
L. paracasei ssp. paracasei | ||
L. pentosus | ||
L. plantarum | ||
L. salivarius | ||
Heterofermentative | L. brevis | |
L. buehneri | ||
L. collinoides | ||
L. eonfusus | ||
L. divergens | ||
L. fermentum | ||
L. fructosus | ||
L. reuteri | ||
L. viridescens | ||
Pediococcus | Homofermentative | P. aeidilaetici |
P. damnosus | ||
P. inopinatus | ||
P. parvulus | ||
P. pentosaeeus | ||
Leuconostoc | Heterofermentative | Leuc. mesenteraides |
Leuc. oenos | ||
Leuc. paramesenteroides | ||
Enterococcus | Homofermentative | Ec. faecalis |
Ec. faeeium | ||
Lactococcus | Homofermentative | Le. laetis |
Streptococcus | Homofermentative | Sc. bovis |
Weissella | Heterofermentative | W. confusa |
[1] | 刘长全, 韩磊. 2020年中国奶业经济形势回顾及2021年展望[J]. 中国畜牧杂志, 2021, 57(3):212-216. |
Liu CQ, Han L. Review of the dairy industry economic situation in 2020 and prospects for 2021 in China[J]. Chinese Journal of Animal Science, 2021, 57(3):212-216. | |
[2] | 童泽圣. 我国粮食供求及“十三五”时期趋势预测[J]. 调研世界, 2015(3):3-6. |
Tong ZS. The grain supply and demand and the trend forecast during the 13th Five-Year-Plan period in China[J]. The World of Survey and Research, 2015(3):3-6. | |
[3] | 谢周松, 陈晓安, 王刚, 等. 湖南省非常规饲料资源开发现状[J]. 湖南畜牧兽医, 2019(3):6-8. |
Xie ZS, Chen XA, Wang G, et al. Development status of unconventional feed resources in Hunan Province[J]. Hunan J Animal Sci Vet Med, 2019(3):6-8. | |
[4] |
Liu QH, Li XY, Desta ST, et al. Effects of Lactobacillus plantarum and fibrolytic enzyme on the fermentation quality and in vitro digestibility of total mixed rations silage including rape straw[J]. J Integr Agric, 2016, 15(9):2087-2096.
doi: 10.1016/S2095-3119(15)61233-3 URL |
[5] | 徐春城. 现代青贮理论与技术[M]. 北京: 科学出版社, 2013. |
Xu CC. Silage science and technology[M]. Beijing: Science Press, 2013. | |
[6] |
Nishino N, Harada H, Sakaguchi E. Evaluation of fermentation and aerobic stability of wet brewers’ grains ensiled alone or in combination with various feeds as a total mixed ration[J]. J Sci Food Agric, 2003, 83(6):557-563.
doi: 10.1002/(ISSN)1097-0010 URL |
[7] | 赵钦君, 吴甜, 刘大森. 发酵TMR及其在生产中的应用[J]. 中国饲料, 2016(14):34-36, 40. |
Zhao QJ, Wu T, Liu DS. The application of TMR silage in the ruminal production[J]. China Feed, 2016(14):34-36, 40. | |
[8] |
Xu CC, Cai Y, Zhang JG, et al. Fermentation quality and nutritive value of a total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter[J]. J Anim Sci, 2007, 85(4):1024-1029.
pmid: 17145973 |
[9] |
Xu C, Cai Y, Zhang J, et al. Feeding value of total mixed ration silage with spent mushroom substrate[J]. Anim Sci J, 2010, 81(2):194-198.
doi: 10.1111/(ISSN)1740-0929 URL |
[10] |
Hu X, Hao W, Wang H, et al. Fermentation characteristics and lactic acid bacteria succession of total mixed ration silages formulated with peach pomace[J]. Asian-Australas J Anim Sci, 2015, 28(4):502-510.
doi: 10.5713/ajas.14.0508 URL |
[11] |
Xu CC, Cai YM, Moriya N, et al. Influence of replacing brewers’ grains with green tea grounds on feed intake, digestibility and ruminal fermentation characteristics of wethers[J]. Animal Sci J, 2008, 79(2):226-233.
doi: 10.1111/asj.2008.79.issue-2 URL |
[12] |
Niu DZ, Zuo SS, Jiang D, et al. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro[J]. Animal Feed Sci Technol, 2018, 237:46-54.
doi: 10.1016/j.anifeedsci.2018.01.005 URL |
[13] |
Yang XX, Chen HZ, Gao HL, et al. Bioconversion of corn straw by coupling ensiling and solid-state fermentation[J]. Bioresour Technol, 2001, 78(3):277-280.
doi: 10.1016/S0960-8524(01)00024-4 URL |
[14] | Wang HL, Sun QZ, Yang FY, et al. Evaluation of fermentation and aerobic stability of total mixed ration silage containing wet brewers’ grains and corn straw[J]. Adv Mater Res, 2011, 347-353:189-192. |
[15] |
Wang H, Ning T, Hao W, et al. Dynamics associated with prolonged ensiling and aerobic deterioration of total mixed ration silage containing whole crop corn[J]. Asian-Australas J Anim Sci, 2016, 29(1):62-72.
doi: 10.5713/ajas.15.0319 URL |
[16] |
Jiang D, Li BN, Zheng ML, et al. Effects of Pediococcus pentosaceus on fermentation, aerobic stability and microbial communities during ensiling and aerobic spoilage of total mixed ration silage containing alfalfa(Medicago sativa L.)[J]. Grassl Sci, 2020, 66(4):215-224.
doi: 10.1111/grs.v66.4 URL |
[17] |
Hao W, Wang HL, Ning TT, et al. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels[J]. Asian-Australas J Anim Sci, 2015, 28(6):816-826.
doi: 10.5713/ajas.14.0837 URL |
[18] |
Jiang D, Zheng ML, Niu DZ, et al. Effects of steam explosion pretreatment and Lactobacillus buchneri inoculation on fungal community of unensiled and ensiled total mixed ration containing wheat straw during air exposure[J]. J Appl Microbiol, 2020, 128(3):675-687.
doi: 10.1111/jam.14518 pmid: 31721404 |
[19] |
Borreani G, Tabacco E, Schmidt RJ, et al. Silage review:Factors affecting dry matter and quality losses in silages[J]. J Dairy Sci, 2018, 101(5):3952-3979.
doi: S0022-0302(18)30320-5 pmid: 29685272 |
[20] | Honig H, Pahlow G, Thaysen J. Aerobic instability-effects and possibilities for its prevention[C]. The XII International Silage Conference. Uppsala, Sweden, 1999. |
[21] | Whitlock LA, Wistuba T, Siefers MK, et al. Effect of level of surface-spoiled silage on the nutritive value of corn silage-based rations[J]. Kans Agric Exp Sta Res Rep, 2000(1):22-24. |
[22] |
Pitt RE. A model of aflatoxin formation in stored products[J]. Trans ASAE, 1995, 38(5):1445-1453.
doi: 10.13031/2013.27969 URL |
[23] |
Wilkinson JM. Silage and animal health[J]. Nat Toxins, 1999, 7(6):221-232.
pmid: 11122511 |
[24] | Pahlow G, Muck RE, Driehuis F, et al. Microbiology of ensiling[M]// Agronomy Monographs. Madison, WI, USA:American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015:31-93. |
[25] |
Cavallarin L, Tabacco E, Antoniazzi S, et al. Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure[J]. J Sci Food Agric, 2011, 91(13):2419-2425.
doi: 10.1002/jsfa.v91.13 URL |
[26] | 刘秦华. 影响青贮料好氧变质的因素及乳酸菌抑制变质的机理研究[D]. 广州:华南农业大学, 2012. |
Liu QH. Study on the factors and the mechanism of aerobic deterioration inhibition by lactic acid bacteria in silage[D]. Guangzhou:Huanan Agricultural University, 2012. | |
[27] |
Wilkinson JM, Davies DR. The aerobic stability of silage:key findings and recent developments[J]. Grass Forage Sci, 2013, 68(1):1-19.
doi: 10.1111/gfs.2013.68.issue-1 URL |
[28] |
Wilkinson JM, Rinne M. Highlights of progress in silage conservation and future perspectives[J]. Grass Forage Sci, 2018, 73(1):40-52.
doi: 10.1111/gfs.2018.73.issue-1 URL |
[29] |
Merry RJ, Davies DR. Propionibacteria and their role in the biological control of aerobic spoilage in silage[J]. Lait, 1999, 79(1):149-164.
doi: 10.1051/lait:1999112 URL |
[30] |
Jonsson A. Enumeration and confirmation of Clostridium tyrobutyricum in silages using neutral red, D-cycloserine, and lactate dehydrogenase activity[J]. J Dairy Sci, 1990, 73(3):719-725.
pmid: 2341647 |
[31] | Mcdonald P. The biochemistry of silage[M]. New York:John Wiley Sons, 1981. |
[32] | Beck T, Gross F. Ursachen der unterschiedlichen Haltbarkeit von Gärfutter[J]. Wirtschaftseigene Futter, 1964, 10:298-312. |
[33] |
Woolford MK. The detrimental effects of air on silage[J]. J Appl Bacteriol, 1990, 68(2):101-116.
doi: 10.1111/jam.1990.68.issue-2 URL |
[34] | Putnam D. Proceedings of the California alfalfa and forage symposium[C]. Visalia:University of California, 2010. |
[35] |
Borreani G, Piano S, Tabacco E. Aerobic stability of maize silage stored under plastic films with different oxygen permeability[J]. J Sci Food Agric, 2014, 94(13):2684-2690.
doi: 10.1002/jsfa.2014.94.issue-13 URL |
[36] |
Santos MC, Golt C, Joerger RD, et al. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods[J]. J Dairy Sci, 2017, 100(2):1151-1160.
doi: S0022-0302(16)30823-2 pmid: 27889126 |
[37] | Cao Y, Cai YM, Hirakubo T, et al. Fermentation characteristics and microorganism composition of total mixed ration silage with local food by-products in different seasons[J]. Animal Sci J, 2011, 82(2):259-266. |
[38] |
Wang C, Nishino N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage[J]. J Appl Microbiol, 2013, 114(6):1687-1695.
doi: 10.1111/jam.12200 pmid: 23565809 |
[39] |
Ning T, Wang H, Zheng M, et al. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages[J]. Asian-Australas J Anim Sci, 2017, 30(2):171-180.
doi: 10.5713/ajas.16.0046 URL |
[40] | Hao W, Tian P, Zheng M, et al. Characteristics of proteolytic microorganisms and their effects on proteolysis in total mixed ration silages of soybean curd residue[J]. Asian-Australas J Anim Sci, 2019:100-110. |
[41] |
Wang H, Hao W, Ning T, et al. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage[J]. Asian-Australas J Anim Sci, 2018, 31(2):198-207.
doi: 10.5713/ajas.17.0183 URL |
[42] |
Wang FJ, Nishino N. Association of Lactobacillus buchneri with aerobic stability of total mixed ration containing wet brewers grains preserved as a silage[J]. Animal Feed Sci Technol, 2009, 149(3/4):265-274.
doi: 10.1016/j.anifeedsci.2008.06.012 URL |
[43] | Jiang D, Niu DZ, Zuo SS, et al. Yeast population dynamics on air exposure in total mixed ration silage with sweet potato residue[J]. Anim Sci J, 2020, 91(1):e13397. |
[44] | 江迪. 红薯饮料渣TMR发酵过程中及有氧状态下微生物种群演替规律研究[D]. 北京:中国农业大学, 2016. |
Jiang D. Succession of microbial populations with prolonged ensiling and during aerobic exposure of TMR formulated with sweet potato residue[D]. Beijing:China Agricultural University, 2016. |
[1] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[2] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[3] | 李锐, 孙祖莉, 杨贤庆, 李来好, 魏涯, 岑剑伟, 王晶, 赵永强. 代谢组学在水产品品质与安全中的研究进展[J]. 生物技术通报, 2020, 36(11): 155-163. |
[4] | 官丽莉, 崔琪, 李声钊, 董程, 李海龙, 彭建豪, 李校堃. 植物防御素基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2018, 34(1): 33-39. |
[5] | 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2017, 33(4): 27-37. |
[6] | 李杏春, 何双辉. 大伏革菌防治针叶树根腐病的研究进展[J]. 生物技术通报, 2014, 0(7): 26-32. |
[7] | 刘月星, 马洪雨, 马春艳, 蒋伟, 李淑娟, 马凌波. 水产动物重要经济性状相关功能基因的研究进展[J]. 生物技术通报, 2014, 0(2): 30-40. |
[8] | 乔玮, 郝华, 彭会, 刘洁, 陈慧芸. 抗菌肽作为饲料添加剂的研究进展[J]. 生物技术通报, 2014, 0(10): 43-48. |
[9] | 高行英, 李梅兰, 王婷婷, 侯雷平. 葱蒜类蔬菜遗传转化研究进展[J]. 生物技术通报, 2013, 0(5): 1-6. |
[10] | 张洁, 周岩. 根癌农杆菌转化单子叶植物的研究进展与对策[J]. 生物技术通报, 2013, 0(5): 7-14. |
[11] | 杨志刚, 郭子好, 姚琴琴, 成永旭. 脂肪酸去饱和酶基因的研究进展[J]. 生物技术通报, 2013, 0(12): 21-26. |
[12] | 周岩;张洁;袁重要;马俊;. 紫花苜蓿转基因技术及其应用的研究进展[J]. , 2012, 0(08): 17-23. |
[13] | 何天明;韩冰;吴玉霞;李文慧;何峰江;. 杏褪绿卷叶病研究现状及展望[J]. , 2012, 0(07): 20-26. |
[14] | 李巧云;张晓亮;张志刚;赵智中;. 大白菜分子遗传图谱构建研究进展[J]. , 2012, 0(06): 18-24. |
[15] | 周岩;薛晓锋;魏琦超;张洁;何男男;游建;. 小麦转基因技术研究进展[J]. , 2012, 0(02): 53-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||