[1] |
Stouthart AJ, Lucassen EC, van Strien FJ, et al. Stress responsiveness of the pituitary-interrenal axis during early life stages of common carp(Cyprinus carpio)[J]. J Endocrinol, 1998, 157(1): 127-137.
pmid: 9614366
|
[2] |
张峥斌. 一锅法连续发酵制备Δ1-11α,17α-二羟基黄体酮的方法: CN104711311A[P]. 2015-06-17.
|
|
Zhang ZB. Preparation of Δ1-11α,17α-dihydroxyprogesterone by continuous fermentation in a one-pot method: 10471131-1A[P]. 2015-06-17.
|
[3] |
Fotsch C, Wang MH. Blockade of glucocorticoid excess at the tissue level: inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 as a therapy for type 2 diabetes[J]. J Med Chem, 2008, 51(16): 4851-4857.
doi: 10.1021/jm800369f
pmid: 18652443
|
[4] |
Pedersen KB, Geng CD, Vedeckis WV. Three mechanisms are involved in glucocorticoid receptor autoregulation in a human T-lymphoblast cell line[J]. Biochemistry, 2004, 43(34): 10851-10858.
pmid: 15323545
|
[5] |
Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs[J]. N Engl J Med, 2005, 353(16): 1711-1723.
doi: 10.1056/NEJMra050541
URL
|
[6] |
张喜春, 韩振海, XoджaйoBa ЛТ, 等. 植物体内甾醇的合成和生理作用[J]. 植物生理学通讯, 2001, 37(5): 452-457.
|
|
Zhang XC, Han ZH, XoджaйoBa ЛT, et al. Synthesis and physiological function of sterols in plants[J]. Plant Physiol Commun, 2001, 37(5): 452-457.
|
[7] |
Canada KA, Iwashita S, Shim H, et al. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation[J]. J Bacteriol, 2002, 184(2): 344-349.
doi: 10.1128/JB.184.2.344-349.2002
pmid: 11751810
|
[8] |
Bühler B, Schmid A. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization[J]. J Biotechnol, 2004, 113(1-3): 183-210.
pmid: 15380656
|
[9] |
Urlacher VB, Schmid RD. Recent advances in oxygenase-catalyzed biotransformations[J]. Curr Opin Chem Biol, 2006, 10(2): 156-161.
pmid: 16488653
|
[10] |
van Beilen JB, Duetz WA, Schmid A, et al. Practical issues in the application of oxygenases[J]. Trends Biotechnol, 2003, 21(4): 170-177.
pmid: 12679065
|
[11] |
艾露, 陈文慧, 史京辉, 等. 赭曲霉11α羟化酶的克隆表达及关键氨基酸位点分析[J]. 生物技术通报, 2023, 39(4): 114-123.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0572
|
|
Ai L, Chen WH, Shi JH, et al. Cloning and expression of 11α hydroxylase from Aspergillus ochraceus and analysis of key amino acid sites[J]. Biotechnol Bull, 2023, 39(4): 114-123.
|
[12] |
Koehn EM, Kohen A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine[J]. Arch Biochem Biophys, 2010, 493(1): 96-102.
doi: 10.1016/j.abb.2009.07.016
pmid: 19643076
|
[13] |
Hannemann F, Bichet A, Ewen KM, et al. Cytochrome P450 systems—biological variations of electron transport chains[J]. Biochim Biophys Acta, 2007, 1770(3): 330-344.
pmid: 16978787
|
[14] |
Barnaba C, Ramamoorthy A. Picturing the membrane-assisted choreography of cytochrome P450 with lipid nanodiscs[J]. Chemphyschem, 2018, 19(20): 2603-2613.
doi: 10.1002/cphc.201800444
pmid: 29995333
|
[15] |
候向江. 赭曲霉甾体11α-羟化酶基因异源表达研究[D]. 天津: 天津科技大学.
|
|
Hou XJ. Heterologous expression research of Aspergillus ochraceus steroid 11α-hydrolyase gene[D]. Tianjin: Tianjin University of Science & Technology.
|
[16] |
Felpeto-Santero C, Galán B, García JL. Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis[J]. Microb Biotechnol, 2021, 14(6): 2514-2524.
doi: 10.1111/1751-7915.13735
pmid: 33660943
|
[17] |
林本凤, 职亚飞, 刘晓光, 等. 黑曲霉ATCC1015催化16α,17α-环氧黄体酮11α-羟基化及相关P450基因诱导表达[J]. 天津科技大学学报, 2017, 32(6): 8-14.
|
|
Lin BF, Zhi YF, Liu XG, et al. 11α-hydroxylation of 16α,17α-epoxy progesterone by Aspergillus niger ATCC1015 and induction expression of relevant cytochromes P450 genes[J]. J Tianjin Univ Sci Technol, 2017, 32(6): 8-14.
|
[18] |
Wang RJ, Sui PC, Hou XJ, et al. Cloning and identification of a novel steroid 11α-hydroxylase gene from Absidia coerulea[J]. J Steroid Biochem Mol Biol, 2017, 171: 254-261.
doi: 10.1016/j.jsbmb.2017.04.006
URL
|
[19] |
Wang X, Yang XW, Jia X, et al. Determination of steroid hydroxylation specificity of an industrial strain Aspergillus ochraceus TCCC41060 by cytochrome P450 gene CYP68J5[J]. Ann Microbiol, 2020, 70(1): 45.
doi: 10.1186/s13213-020-01577-6
|
[20] |
Qian M, Zeng YL, Mao SH, et al. Engineering of a fungal steroid 11α-hydroxylase and construction of recombinant yeast for improved production of 11α-hydroxyprogesterone[J]. J Biotechnol, 2022, 353: 1-8.
doi: 10.1016/j.jbiotec.2022.05.012
pmid: 35654275
|
[21] |
Li SL, Chang YW, Liu YN, et al. A novel steroid hydroxylase from Nigrospora sphaerica with various hydroxylation capabilities to different steroid substrates[J]. J Steroid Biochem Mol Biol, 2023, 227: 106236.
doi: 10.1016/j.jsbmb.2022.106236
URL
|
[22] |
乔玉茜. 17α羟基黄体酮11α羟化菌株筛选及其转化工艺研究[D]. 天津: 天津科技大学, 2017.
|
|
Qiao YQ/X. Screeing and transformation conditions of 11α-hydroxylation of 17α-hydroxy progesterone[D]. Tianjin: Tianjin University of Science & Technology, 2017.
|
[23] |
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities[J]. Expert Opin Drug Discov, 2015, 10(5): 449-461.
doi: 10.1517/17460441.2015.1032936
URL
|
[24] |
曲戈, 袁波, 孙周通. 工业蛋白质理性设计与应用[J]. 生物工程学报, 2022, 38(11): 4068-4080.
|
|
Qu G, Yuan B, Sun ZT. Rational design and applications of industrial proteins[J]. Chin J Biotechnol, 2022, 38(11): 4068-4080.
|
[25] |
Acevedo-Rocha CG, Gamble CG, Lonsdale R, et al. P450-catalyzed regio- and diastereoselective steroid hydroxylation: efficient directed evolution enabled by mutability landscaping[J]. ACS Catal, 2018, 8(4): 3395-3410.
doi: 10.1021/acscatal.8b00389
URL
|
[26] |
Tao S, Gao Y, Li K, et al. Engineering substrate recognition sites of cytochrome P450 monooxygenase CYP116B3 from Rhodococcus ruber for enhanced regiospecific naphthalene hydroxylation[J]. Mol Catal, 2020, 493: 111089.
|
[27] |
Chen J, Fan FY, Qu G, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone[J]. Metab Eng, 2020, 57: 31-42.
doi: 10.1016/j.ymben.2019.10.006
URL
|
[28] |
Doğru EK, Güralp G, Uyar A, et al. Rational design of thermophilic CYP119 for progesterone hydroxylation by in silico mutagenesis and docking screening[J]. J Mol Graph Model, 2023, 118: 108323.
doi: 10.1016/j.jmgm.2022.108323
URL
|
[29] |
Tong W, Yan QP, Tian SX, et al. Single-site modification of the P450-BM3 substrate-entrance facilitates the synthesis of optically pure pharmaceutically useful methyl trans-3-phenylglycidates[J]. Mol Catal, 2023, 547: 113354.
|
[30] |
Wang FH, Zhu ML, Song Z, et al. Reshaping the binding pocket of lysine hydroxylase for enhanced activity[J]. ACS Catal, 2020, 10(23): 13946-13956.
doi: 10.1021/acscatal.0c03841
URL
|