生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 142-151.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0297

• 技术与方法 • 上一篇    下一篇

基于SCoT分子标记分析白术种质资源遗传多样性及DNA指纹图谱构建

李晴1(), 石雨荷1, 朱珏1, 李晓玲1, 侯超文1, 童巧珍1,2,3()   

  1. 1.湖南中医药大学药学院,长沙 410208
    2.湘产大宗道地药材种质资源及规范化种植重点研究室,长沙 410208
    3.湖南省普通高等学校中药现代化研究重点实验室,长沙 410208
  • 收稿日期:2024-03-26 出版日期:2024-11-26 发布日期:2024-12-19
  • 通讯作者: 童巧珍,女,博士,教授,博士生导师,研究方向:中药资源与品质评价;E-mail: qztong88@126.com
  • 作者简介:李晴,女,硕士研究生,研究方向:中药资源与开发;E-mail: 984912094@qq.com
  • 基金资助:
    国家中药材产业技术体系食用百合龙山综合试验站(CARS-21);湖南省科技厅科技特派员服务乡村振兴项目(2021NK4240);湖南省教育厅重点项目(22A0272);湖南中医药大学研究生创新项目(2021CX51)

Genetic Diversity Analysis and DNA Fingerprint Construction of Atractylodes macrocephala Germplasm Resources Based on SCoT Molecular Markers

LI Qing1(), SHI Yu-he1, ZHU Jue1, LI Xiao-ling1, HOU Chao-wen1, TONG Qiao-zhen1,2,3()   

  1. 1. School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208
    2. Key Research Lab of Germplasm Resources and Standardized Planting of Genuine Regional Medicinal Materials Produced in Hunan Province, Changsha 410208
    3. Key Lab of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208
  • Received:2024-03-26 Published:2024-11-26 Online:2024-12-19

摘要:

【目的】 采用SCoT分子标记技术对17份白术种质资源进行遗传多样性分析及DNA指纹图谱构建,为白术种质的鉴定、保存和新品种选育提供一定的理论依据。【方法】 从92条SCoT引物中筛选得到13条核心引物用于白术分子标记,利用Popgene1.32软件和NTSYS-pc 2.10e软件进行白术种质资源多样性分析和聚类分析,以核心引物SCoT-9、SCoT-12和SCoT-41组合构建白术DNA分子指纹图谱。【结果】 13条SCoT核心引物扩增17份白术样品共得到192条条带,其中,多态性条带165条,平均百分率85.94%;遗传相似系数(GS)和遗传距离(GD)分别介于0.578 1-0.875 0和0.133 5-0.548 0,白术种质的观测等位基因数(Na)为1.859 4,有效等位基因数(Ne)为1.418 0,Nei's遗传多样性指数(He)为0.256 3,Shannon信息指数(I)为0.396 8,聚类分析得到白术栽培品一类,而大围山野生品被单独聚为一类;所构建的17份白术种质资源DNA指纹图谱,可以将样品区分并准确鉴定。【结论】 白术种质资源具有较为丰富的遗传多样性,但不同产地白术栽培品之间遗传差异低,表明地理位置并不是判断白术亲缘关系远近的决定性因素。

关键词: 白术, SCoT分子标记, 遗传多样性分析, DNA指纹图谱

Abstract:

【Objective】 Using SCoT molecular marker technology, the genetic diversity analysis and DNA fingerprinting were conducted on 17 germplasm resources of Atractylodes macrocephala, providing a theoretical basis for the identification, preservation, and breeding of new varieties of A. macrocephala germplasm. 【Method】 Thirteen core primers were selected from 92 SCoT primers for molecular labeling of A. macrocephala. Popgene1.32 software and NTSYS pc 2.10e software were used for diversity analysis and cluster analysis of A. macrocephala germplasm resources. A DNA molecular fingerprint map of A. macrocephala was constructed by combining the core primers of SCoT-9, SCoT-12, and SCoT-41. 【Result】 A total of 192 bands were obtained from 17 samples of A. macrocephala amplified by 13 SCoT core primers, including 165 polymorphic bands, with an average percentage of 85.94%. The genetic similarity coefficient(GS)and genetic distance(GD)ranged from 0.578 1 to 0.875 0 and 0.133 5 to 0.548 0, respectively. The observed number of alleles(Na)in the A. macrocephala germplasm was 1.859 4, the effective number of alleles(Ne)was 1.418 0, the Nei's genetic diversity index(He)was 0.256 3, and the Shannon information index(I)was 0.396 8. Cluster analysis showed that A. macrocephala was a cultivated variety, while the wild variety of Daweishan was separately clustered into another category. By the 17 constructed DNA fingerprint maps of A. macrocephala germplasm resources, the samples were distinguished and accurately identified. 【Conclusion】 The germplasm resources of A. macrocephala have relatively rich genetic diversity, but the genetic differences among cultivated A. macrocephala from different regions are low, indicating that geographical location is not a decisive factor in determining the distance of A. macrocephala kinship.

Key words: Atractylodes macrocephala, SCoT molecular markers, genetic diversity analysis, DNA fingerprinting