生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 40-50.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0764

• 综述与专论 • 上一篇    下一篇

瘤胃氨同化通路及基因进化研究进展

王彤1(), 肖汉杰1, 谢昊炅1, 张立申2, 姚晓亮3, 严慧1(), 纪守坤1()   

  1. 1.河北农业大学动物科技学院,保定 071000
    2.河北省保定市唐县农业农村局,保定 072350
    3.河北拓奕生物科技有限公司,石家庄 051531
  • 收稿日期:2024-08-08 出版日期:2025-02-26 发布日期:2025-02-28
  • 通讯作者: 严慧,女,副教授,硕士生导师,研究方向 :反刍动物肠道微生态与健康;E-mail: yanhuihui@126.com
    纪守坤,男,副教授,博士生导师,研究方向 :反刍动物营养;E-mail: jishoukun@163.com
  • 作者简介:王彤,女,博士研究生,研究方向 :反刍动物营养;E-mail: wang2896784183@163.com
  • 基金资助:
    国家重点研发计划(2023YFD1300904);河北省自然科学基金(C2022204232);保定市科技计划项目(2394N017)

Research Progress in Ammonia Assimilation and Genetic Evolution in Rumen

WANG Tong1(), XIAO Han-jie1, XIE Hao-jiong1, ZHANG Li-shen2, YAO Xiao-liang3, YAN Hui1(), JI Shou-kun1()   

  1. 1.College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000
    2.Administration of Agriculture and Rural Affairs of Tang County, Baoding 072350
    3.Hebei Tuoyi Biotechnology Co. , Ltd. , Shijiazhuang 051531
  • Received:2024-08-08 Published:2025-02-26 Online:2025-02-28

摘要:

蛋白质饲料资源的短缺严重限制着我国畜牧业的持续稳定发展。反刍动物具有将非蛋白氮转化为氨基酸或蛋白质的独特能力,添加非蛋白氮是缓解反刍动物蛋白饲粮短缺的有效途径,但瘤胃氨同化是限制其利用效率的关键步骤。因此,如何提高反刍动物氮同化效率是缓解蛋白饲粮短缺的重要手段。氨同化指游离氨并入碳骨架形成含氮有机物的过程。瘤胃微生物可以将游离的氨同化为微生物蛋白质(microbial protein, MCP),为反刍动物提供49%-98%的可代谢蛋白质。瘤胃氨同化作用可通过4条通路进行:①谷氨酸脱氢酶(glutamate dehydrogenase, GDH):氨与α-酮戊二酸在GDH的作用下发生胺化生成谷氨酸;②谷氨酰胺合成酶-谷氨酸合成酶(glutamine synthetase-glutamate synthase, GS-GOGAT):氨和谷氨酸经GS催化后形成谷氨酰胺;③丙氨酸脱氢酶(alanine dehydrogenase, ADH):氨和丙酮酸可经过ADH通路生成丙氨酸;④天冬酰胺合成酶(asparagine synthetase, AS):天冬氨酸和氨可通过AS通路发生酰胺化生成天冬酰胺。本文深入探究了瘤胃微生物氨同化通路反应过程,综述了瘤胃4条氨同化通路过程及其关键微生物、酶和影响因素,并通过构建系统发育树解析了瘤胃细菌不同氨同化基因的进化关系,为反刍动物氨氮高效利用提供理论支持。

关键词: 反刍动物, 非蛋白氮, 氨同化通路, GDH通路, GS-GOGAT通路

Abstract:

The shortage of protein feed resources has severely restricted the sustained and stable development of animal husbandry in China. Ruminants possess the special ability to convert non-protein nitrogen into amino acids or proteins. Adding non-protein nitrogen is an effective approach to alleviate protein feed shortages in ruminants, but rumen ammonia assimilation is the key step limiting its utilization efficiency. Therefore, improving the nitrogen assimilation efficiency of ruminants is an important means of alleviating the shortage of protein feed. Ammonia assimilation refers to the process of free ammonia merging into the carbon skeleton to form nitrogen-containing organic compounds. Rumen microorganisms may assimilate free ammonia into microbial protein (MCP), providing 49%-98% of metabolizable protein for ruminants. Rumen ammonia assimilation can be carried out through four pathways: ① the glutamate dehydrogenase (GDH) pathway: ammonia and α-ketoglutarate undergo aminification catalyzed by GDH to produce glutamate; ② the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway: ammonia and glutamate are catalyzed by GS to form glutamine;③ the alanine dehydrogenase (ADH) pathway: alanine can be produced by ammonia and pyruvate through the ADH pathway; ④ the asparagine synthetase (AS) pathway: aspartate and ammonia can form asparagine through the AS pathway. This article explores the process of ammonia assimilation pathway reaction in rumen microorganisms and reviews these four ammonia assimilation pathways of rumen microbes, their key enzymes, microorganisms involved, and influencing factors. By constructing phylogenetic trees to explain the evolutionary relationships of key genes, theoretical support for the utilization of ammonia nitrogen in ruminants is provided.

Key words: ruminants, non-protein nitrogen, ammonia assimilation pathway, GDH pathways, GS-GOGAT pathways