生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 49-57.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1234
王璐, 刘理想, 孙大明, 刘军花
收稿日期:
2019-12-15
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
王璐,女,硕士研究生,研究方向:反刍动物营养;E-mail:18735423505@163.com
基金资助:
WANG Lu LIU, Li-xiang, SUN Da-ming, LIU Jun-hua
Received:
2019-12-15
Published:
2020-02-26
Online:
2020-02-23
摘要: 瘤胃是反刍动物营养物质消化吸收和代谢的重要器官,其发育状态直接影响反刍动物生产性能和健康。初生犊牛和羔羊,瘤胃功能尚未发育完全,不能够充分消化和吸收固体饲料。因此,在幼龄时期,通过营养调控手段促进反刍动物的瘤胃发育对维持动物健康及提高生产性能具有重要意义。丁酸是瘤胃微生物降解植物性饲料的主要产物,也是瘤胃上皮及宿主的重要能量来源。丁酸调控幼龄反刍动物瘤胃上皮发育是一个历久弥新的话题。主要介绍了幼龄反刍动物瘤胃上皮形态及功能的发育以及丁酸调控幼龄反刍动物瘤胃上皮发育的研究进展。
王璐, 刘理想, 孙大明, 刘军花. 丁酸调控幼龄反刍动物瘤胃上皮发育研究进展[J]. 生物技术通报, 2020, 36(2): 49-57.
WANG Lu LIU, Li-xiang, SUN Da-ming, LIU Jun-hua. Research Progress of Butyrate Regulating Rumen Epithelial Development in Young Ruminants[J]. Biotechnology Bulletin, 2020, 36(2): 49-57.
[1] 吕小康. 不同饲粮对20~60日龄山羊羔羊瘤胃发育的影响[D]. 北京:中国农业科学院, 2019. [2] Nishihara K, Suzuki Y, Kim D, et al.Growth of rumen papillae in weaned calves is associated with lower expression of insulin-like growth factor-binding proteins 2, 3, and 6[J]. Animal Science Journal, 2019, 90(9):1287-1292. [3] Stobo IJ, Roy JH, Gaston HJ.Rumen development in the calf. 1. The effect of diets containing different proportions of concentrates to hay on rumen development[J]. British Journal of Nutrition, 1966, 20(2):171-188. [4] Górka P, Kowalski ZM, Pietrzak P, et al.Effect of method of delivery of sodium butyrate on rumen development in newborn calves[J]. Journal of Dairy Science, 2011, 94(11):5578-5588. [5] Liu JH, Xu TT, Liu YJ, et al.A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2013, 305(3):232-241. [6] 高健. 瘤胃上皮挥发性脂肪酸吸收与生物钟因子表达关系的研究[D]. 扬州:扬州大学, 2017. [7] Leighton B, Nicholas AR, Pogson CI.The pathway of ketogenesis in rumen epithelium of the sheep[J]. Biochemical Journal, 1983, 216(3):769-772. [8] Warner RG, Flatt WP, Loosli JK.Dietary factors influencing the development of the ruminant stomach[J]. Journal of Agricultural & Food Chemistry, 1956, 4:788-801. [9] Vi RLB, Mcleod KR, Klotz JL, et al.Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87(1):55-65. [10] Gilliland RL, Bush LJ, Friend JD.Relation of ration composition to rumen development in early-weaned dairy calves with observations on ruminal parakeratosis[J]. Journal Dairy Science, 1962, 45(10):1211-1217. [11] Sander EG, Warner RG, Harrison HN, et al.The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf[J]. Journal of Dairy Science, 1959, 42(9):1600-1605. [12] Tamate H, Mcgilliard AD, Jacobson NL, et al.Effect of various dietaries on the anatomical development of the stomach in the calf[J]. Journal of Dairy Science, 1962, 45(3):408-420. [13] Orskov ER, Benzie D, Kay RNB.The effects of feeding procedure on closure of the esophageal groove in young sheep[J]. British Journal of Nutrition, 1970, 24(3):785-795. [14] Lane MA, Baldwin RLV, Jesse BW.Developmental changes in ketogenic enzyme gene expression during sheep rumen development[J]. Journal of Animal Science, 2002, 80(6):1538-1544. [15] Gálfi P.Physiological aspects of digestion and metabolism in ruminantsⅡEffects of volatile fatty acids on the epithelial cell proliferation of the digestive tract and its hormonal mediation[J]. Physiological Aspects of Digestion & Metabolism in Ruminants, 1991:49-59. [16] Giesecke D, Beck U, Wiesmayr S, et al.The effect of rumen epithelial development on metabolic activities and ketogenesis by the tissue in vitro[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1979, 62(4):459-463. [17] 冯仰廉. 反刍动物营养学[M]. 北京:科学出版社, 2004. [18] 高景, 齐智利. 瘤胃上皮短链脂肪酸的吸收和代谢[J]. 动物营养学报, 2018, 30(4):1271-1278. [19] Graham C, Gatherar I, Haslam I, et al.Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(2):997-1007. [20] Penner GB, Aschenbach JRR, Gotthold GB, et al.Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep[J]. Journal of Nutrition, 2009, 139(9):1714-1720. [21] Aschenbach JR, Bilk S, Tadesse G, et al.Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep[J]. American Journal of Physiology Gastrointestinal & Liver Physiology, 2009, 296(5):1098-1107. [22] Ash RW, Dobson A.The effect of absorption on the acidity of rumen contents[J]. Journal of Physiology, 1963, 169(1):39-61. [23] Aschenbach JR, Penner GB, Stumpff F, et al.Ruminant nutrition symposium:role of fermentation acid absorption in the regulation of ruminal pH[J]. Journal of Animal Science, 2011, 89(4):1092-1107. [24] Cook RM, Liu SCC, Quraishi S.Utilization of volatile fatty acids in ruminants. III. Comparison of mitochondrial acyl coenzyme A synthetase activity and substrate specificity in different tissues[J]. Biochemistry, 1969, 8(7):2966-2969. [25] Brown RE.Digestive physiology and nutrition of ruminants[J]. Journal of Dairy Science, 1970, 53(9):1304. [26] Lane MA, Jesse BW.Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep[J]. Journal of Dairy Science, 1997, 80(4):740-746. [27] Saez JC, Berthoud VM, Branes MC, et al.Plasma membrane channels formed by connexins:their regulation and functions[J]. Physiological Reviews, 2003, 83(4):1359-1400. [28] Sander EG, Warner RG, Harrison HN, et al.The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf[J]. Journal of Dairy Science, 1959, 42(9):1600-1605. [29] Jesse BW, Solomon RK, Baldwin RL.Palmitate metabolism by isolated sheep rumen epithelial cells[J]. Journal of Animal Science, 1992, 70(7):2235-2242. [30] Lane MA, Baldwin RL, Jesse BW.Sheep rumen metabolic development in response to age and dietary treatments[J]. Journal of Animal Science, 2000, 78(7):1990-1996. [31] Guilloteau P, Martin L, Eeckhaut V, et al.From the gut to the peripheral tissues:the multiple effects of butyrate[J]. Nutrition Research Reviews, 2010, 23(2):366-384. [32] Plöger S, Stumpff F, Penner GB, et al.Microbial butyrate and its role for barrier function in the gastrointestinal tract[J]. Annals of the New York Academy of Sciences, 2012, 1258(1):52-59. [33] Flaga J, Górka P, Zabielski R, et al.Differences in monocarboxylic acid transporter type 1 expression in rumen epithelium of newborn calves due to age and milk or milk replacer feeding[J]. Journal of Animal Physiology & Animal Nutrition, 2015, 99(3):521-530. [34] Anderson KL, Nagaraja TG, Morrill J L.Ruminal metabolic development in calves weaned conventionally or early[J]. Journal of Dairy Science, 1987, 70(5):1000-1005. [35] Górka P, Kowalski ZM, Pietrzak P, et al.Is rumen development in newborn calves affected by different liquid feeds and small intestine development?[J]. Journal of Dairy Science, 2011, 94(6):3002-3013. [36] Smith JG, Yokoyama WH, German JB.Butyric acid from the diet:actions at the level of gene expression[J]. Critical Reviews in Food Science and Nutrition, 1998, 38(4):259-297. [37] 岳莹雪, 王玉琦, 闫芬芬, 等. 丁酸的生产方法及在肠道中的生理功能研究进展[J]. 食品工业科技, 2019, 15:339-344. [38] 徐运杰, 刘以林, 陈学华, 等. 丁酸的营养生理与药理作用[J]. 中国饲料, 2019, 3:74-77. [39] 刘艳莉, 胡毅, 钟蕾, 等. 丁酸对动物肠道健康的影响及水产应用前景[J]. 水产科学, 2019, 38(2):276-281. [40] Mallo JJ, Balfagón A, Gracia MI, et al.Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets[J]. Journal of Animal Science, 2012, 90(S4):227-229. [41] Claus R, Günthner D, Letzguss H.Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig[J]. Journal of Animal Physiology & Animal Nutrition, 2010, 91(7-8):312-318. [42] Górka P, Pietrzak P, Kotunia A, et al.Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves[J]. Journal of Dairy Science, 2014, 97(2):1026-1035. [43] Guilloteau P, Zabielski R, Blum JW.Gastrointestinal tract and digestion in the young ruminant:ontogenesis, adaptations, consequences and manipulations[J]. Journal of Physiology & Pharmacology, 2009, 60(S3):37-46. [44] Manzanilla EG, Nofrarías M, Anguita M, et al.Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs[J]. Journal of Animal Science, 2006, 84(10):2743-2751. [45] Kristensen NB, Sehested J, Jensen SK, et al.Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed holstein calves[J]. Journal of Dairy Science, 2007, 90(9):4346-4355. [46] Heinrichs AJ.Rumen development in the dairy calf[J]. Calf and Heifer Rearing, 2005:53-65. [47] Gorka P, Kowalski ZM, Pietrzak P, et al.Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves[J]. Journal of Physiology and Pharmacology, 2009, 60(S3):47-53. [48] 赵会利, 高艳霞, 李建国, 等. 丁酸钠对断奶犊牛生长、血液生化指标及胃肠道发育的影响[J]. 畜牧兽医学报, 2013, 44(10):1600-1608. [49] Bull LS, Bush LJ, Friend JD, et al.Incidence of ruminal parakeratosis in calves fed different rations and its relation to volatile fatty acid absorption[J]. Journal of Dairy Science, 1965, 48(11):1459-1466. [50] Mcgavin MD, Morrill JL.Scanning electron microscopy of ruminal papillae in calves fed various amounts and forms of roughage[J]. American Journal of Veterinary Research, 1976, 37(5):497-508. [51] Górka P, Śliwiński B, Miltko R, et al.Effect of supplemental sodium butyrate on the activity of carbohydrate-digesting enzymes in the reticulo-ruminal digesta and brush border enzymes in sheep[J]. Journal of Animal Science, 2017, 95(S4):314-315. [52] Araujo G, Terr M, Mereu A, et al.Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves[J]. Animal Production Science, 2015, 56(11):1834-1841. [53] Wanat P, Górka P, Kowalski ZM.Short communication:effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves[J]. Journal of Dairy Science, 2015, 98(4):2682-2686. [54] Malhi M, Gui H, Yao L, et al.Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion[J]. Journal of Dairy Science, 2013, 96(12):7603-7616. [55] Liu LX, Sun DM, Mao SY, et al.Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs[J]. Journal of Animal Science, 2019, 97(2):909-921. [56] Sander EG, Warner RG, Harrison HN, et al.The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf[J]. Journal of Dairy Science, 1959, 42(9):1600-1605. [57] Hodson HH, Mcgilliard AD, Jacobson NL, et al.Metabolic role of rumen mucosa in absorption of butyrate[J]. Journal of Dairy Science, 1965, 48(12):1652-1656. [58] Walker DM, Simmonds RA.The development of the digestive system of the young animal. VI. The metabolism of short-chain fatty acids by the rumen and caecal wall of the young lamb[J]. The Journal of Agricultural Science, 1962, 59(3):375-379. [59] Flatt WP, Warner RG, Loosli JK.Influence of purified materials on the development of the ruminant stomach[J]. Journal of Dairy Science, 1958, 41(11):1593-1600. [60] Kato SI, Sato K, Chida H, et al.Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves[J]. The Journal of Endocrinology, 2011, 211(3):241-248. [61] Sun YY, Li J, Meng QS, et al.Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves[J]. Livestock Science, 2019, 225:78-84. [62] Zitnan R, Kuhla S, Sanftleben P, et al.Diet induced ruminal papillae development in neonatal calves not correlating with rumen butyrate[J]. Veterinarni Medicina, 2005, 50(11):472. [63] Mentschel J, Leiser R, Mülling C, et al.Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis[J]. Archives of Animal Nutrition, 2001, 55(2):85-102. [64] Sakata T, Yajima T.Influence of short chain fatty acids on the epithelial cell division of digestive tract[J]. Quarterly Journal of Experimental Physiology, 1984, 69(3):639-648. [65] Neogrady S, Galfi P, Kutas F.Effects of butyrate and insulin and their interaction on the DNA synthesis of rumen epithelial cells in culture[J]. Experientia, 1989, 45(1):94-96. [66] Gálfi P, Neogrády S.The pH-dependent inhibitory action of n-butyrate on gastrointestinal epithelial cell division[J]. Food Research International, 2001, 34(7):581-586. [67] Gálfi P, Veresegyházy T, Neogrady S, et al.Effect of sodium n-butyrate on primary ruminal epithelial cell culture[J]. Zentralbl Veterinarmed A, 1981, 28(3):259-261. [68] Sakata T, Tamate H.Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate[J]. Journal of Dairy Science, 1978, 61(8):1109-1113. [69] Galfi P, Neogrady S, Kutas F.Dissimilar ruminal epithelial response to short-term and continuous intraruminal infusion of sodium n-butyrate[J]. Journal of Veterinary Medicine Series A, 1986, 33(1-10):47-52. [70] Jamila S, Zhongyan L, Hongbing G, et al.Synchronous and time-dependent expression of cyclins, Cyclin-dependant kinases, and apoptotic genes in the rumen epithelia of butyrate-infused goats[J]. Frontiers in Physiology, 2018, 9:496. [71] Agarwal U, Hu Q, Baldwin RL, et al.Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep[J]. Journal of Animal Science, 2015, 93(5):2382-2390. [72] Niwińska B, Klebniuk R, Bilik K.The role of butyric acid in the functional development of rumen epithelium in calves[J]. Roczniki Naukowe Zootechniki, 2016, 43(2):113-123. [73] Penner GB, Steele MA, Aschenbach JR, et al.Ruminant nutrition symposium:molecular adaptation of ruminal epithelia to highly fermentable diets[J]. Journal of Animal Science, 2011, 89(4):1108-1119. [74] Cavini S, Iraira S, Siurana A, et al.Effect of sodium butyrate administered in the concentrate on rumen development and productive performance of lambs in intensive production system during the suckling and the fattening periods[J]. Small Ruminant Research, 2015, 123(2-3):212-217. [75] Shen ZM, Martens H, Schweigel-Röntgen M.Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro[J]. Experimental Physiology, 2012, 97(4):497-505. [76] 卢劲晔, 卢炜刘静, 等. IGF-1促进山羊瘤胃上皮细胞增殖的机制[J]. 南京农业大学学报, 2014, 37(5):106-110. [77] Liu DC, Zhou XL, Liu GJ, et al.Promotion and inhibition of ruminal epithelium growth by butyric acid and insulin-like growth factor-1(IGF-1)in dairy goats[J]. Journal of Integrative Agriculture, 2014, 13(9):2005-2009. |
[1] | 刘娜, 焦京琳, 饶正华. 短链脂肪酸在动物样本中的检测方法研究进展[J]. 生物技术通报, 2022, 38(8): 84-91. |
[2] | 蒋贤哲, 博彦, 海玲, 新盟, 王炳. 肠肝轴在动物营养代谢和免疫中的作用[J]. 生物技术通报, 2022, 38(7): 128-135. |
[3] | 牛宇辉, 李向茸, 吴贝, 李洪珊, 李殿玉, 陈磊, 魏锁成, 冯若飞. 葡萄糖和丁酸钠对CHO-rHSA工程细胞株中rHSA产量的影响[J]. 生物技术通报, 2022, 38(7): 278-286. |
[4] | 张健, 才恒, 申振豪, 刘仲浩, 赵娟, 张巧珍, 高强. 烟酸促进短乳杆菌合成γ-氨基丁酸的机制[J]. 生物技术通报, 2022, 38(10): 235-242. |
[5] | 陈桥, 吴海英, 王宗寿, 谢雨康, 李宜青, 孙俊松. 聚羟基丁酸酯合成引发的高密度生长大肠杆菌的多位点突变分析[J]. 生物技术通报, 2020, 36(7): 112-118. |
[6] | 刘宇, 丁倩雯, 冉超, 杨雅麟, 王安然, 张洪玲, 张进雄, 李解, Rolf Erik Olsen, Einar Ringø, 张震, 周志刚. 鱼虾肠道菌群代谢产物短链脂肪酸研究进展[J]. 生物技术通报, 2020, 36(2): 58-64. |
[7] | 林淼, 王阔鹏, 陈映良, 孙文婧, 封丽梅, 胡梓轩. 乙醇对瘤胃液接种稻秸的体外发酵产物及细菌群落结构的影响[J]. 生物技术通报, 2020, 36(2): 91-99. |
[8] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[9] | 黄元霞, 彭传海, 丁宁, 邱忠平, 李星, 邹美慧. 一种三联乳酸菌的体外降胆固醇和抗氧化能力研究[J]. 生物技术通报, 2020, 36(12): 113-120. |
[10] | 冯高, 张昱晨, 苟敏, 陈娅婷. 丁酸氧化菌群对抗生素及活性炭协同作用响应[J]. 生物技术通报, 2019, 35(8): 64-76. |
[11] | 黄燕, 宿玲恰, 吴敬. 重组谷氨酸脱羧酶制备γ-氨基丁酸的工艺条件优化[J]. 生物技术通报, 2016, 32(6): 199-204. |
[12] | 张舍熹, 陈少沛, 杨晶, 王菊芳. 丁酸发酵液萃取-酯化偶联合成丁酸乙酯的研究[J]. 生物技术通报, 2014, 0(12): 207-213. |
[13] | 张善亭, 史燕, 张淑丽, 王海宽. 丁酸梭菌的研究应用进展[J]. 生物技术通报, 2013, 0(9): 27-33. |
[14] | 薛林贵;赵旭;景春娥;常思静;. 尼罗蓝在筛选PHB高产菌株中的应用研究[J]. , 2010, 0(03): 181-184. |
[15] | 崔志芳;季爱云;李春露;. 产聚β-羟基丁酸酯菌株的筛选及发酵条件的优化[J]. , 2010, 0(01): 103-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||