[1] Fernandez-Sainz IJ, Largo E, Gladue DP, et al. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on classical swine fever virus replication[J]. Virology, 2014, 121(30):456-457. [2]孙石静, 董彦鹏, 缪芬芳, 等. 我国当前猪瘟疫苗特点及科学免疫[J]. 畜禽业, 2014(3):4-6. [3]Kleiboeker SB. Swine fever:classical swine fever and African swine fever[J]. Vet Clin North Am Food Anim Pract, 2002, 18(3):431-451. [4]Stegeman A, Elbers A, de Smit H, et al. The 1997-1998 epidemic of classical swine fever in the Netherlands[J]. Veterinary Microbiology, 2000, 73(2-3):183-196. [5]Grummer B, Fischer S, Depner K, et a1. Replication of classical swine fever virus strains and isolates in different porcine cell lines[J]. Dtsch Tierarztl Wochenschr, 2006, 113(4):138-142. [6]平玲, 魏园园, 王家敏, 等. 猪瘟疫苗的研究进展及ST细胞苗的研究现状[J]. 当代畜禽养殖业, 2014(3):3-6. [7]Barrias CC, Ribeiro CC, Lamghari M, et al. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres[J]. Journal of Biomedical Materials Research Part a, 2004, 72(1):57-66. [8]Paillet C, Forno G, Kratje R, et al. Suspension-Vero cell cultures as a platform for viral vaccine production[J]. Vaccine, 2009, 27(46):6464-6467. [9] Rourou S, van der Ark A, Majoul S, et al. A novel animal-component-free medium for rabies virus production in vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor[J]. Applied Microbiology and Biotechnology, 2009, 85(1):53-63. [10]Bock A, Schulze-Horse J, Schwarzer J, et al. High-density microcarrier cell cultures for influenza virus production[J]. Biotechnology Progress, 2011, 27(1):241-250. [11] Souza MC, Freire MS, Schulze EA, et al. Production of yellow fever virus in microcarrier-based Vero cell cultures[J]. Vaccine, 2009, 27(46):6420-6423. [12]郭燕华, 郭勇, 罗立新. 微载体培养技术的研究进展[J]. 中国生物工程杂志, 2001, 21(5):56-58. [13]Bock A, Schulze-Horse J, Schwarzer J, et al. High-density microcarrier cell cultures for influenza virus production[J]. Biotechnology Progress, 2011, 27(1):241-250. [14] Hu WS, Meier J, Wang DIC. A mechanistic analysis of the inoculum requirement for the cultivation of mammalian cells on microcarriers[J]. Biotechnology & Bioengineering, 2006, 95(2):306-316. [15] Forestell SP, Kalogerakis N, Behie LA, et al. Development of the optimal inoculation conditions for microcarrier cultures[J]. Biotechnology & Bioengineering, 1992, 39(3):305-313. [16]Bock A, Sann H, Schulze-Horsel J, et al. Growth behavior of number distributed adherent MDCK cells for optimization in microcarrier cultures[J]. Biotechnology Progress, 2009, 25(6):1717-1731. [17] Gnzel Y, Olmer RM, Schafer B, et al. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media[J]. Vaccine, 2006, 24(35-36):6074-6087. [18]Concei??o MM, Tonso A, Freitas CB, et al. Viral antigen production in cell cultures on microcarriers[J]. Vaccine, 2007(45):7785-7795. [19]Hu AY, Weng TC, Tseng YF, et al. Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines[J]. Vaccine, 2008, 26(45):5736-5740. [20]何锡忠, 李春华, 倪建平, 等. 微载体培养PK-15细胞试验条件的优化[J]. 动物医学进展, 2010, 31(8):20-23. |