[1] Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910):952-956. [2] Dambach MD, Winkler WC. Expanding roles for metabolite-sensing regulatory RNAs[J]. Curr Opin Microbiol, 2009, 12(2):161-169. [3] Barrick JE, Breaker RR. The distributions, mechanisms, and structures of metabolite-binding riboswitches[J]. Genome Biol, 2007, 8(11):R239. [4] Lee CH, Han SR, Lee SW. Therapeutic applications of Aptamer-based riboswitches[J]. Nucleic Acid Ther, 2016, 26(1):44-51. [5] Serganov A, Nudler E. A decade of riboswitches[J]. Cell, 2013, 152(1-2):17-24. [6] Dann CR, Wakeman CA, Sieling CL, et al. Structure and mechanism of a metal-sensing regulatory RNA[J]. Cell, 2007, 130(5):878-892. [7] Breaker RR. Riboswitches and the RNA world[J]. Cold Spring Harb Perspect Biol, 2012, 4(2):a003566. [8] Kim JN, Blount KF, Puskarz I, et al. Design and antimicrobial action of purine analogues that bind Guanine riboswitches[J]. ACS Chem Biol, 2009, 4(11):915-927. [9] Li S, Breaker RR. Fluoride enhances the activity of fungicides that destabilize cell membranes[J]. Bioorg Med Chem Lett, 2012, 22(9):3317-3322. [10] Serganov A, Patel DJ. Amino acid recognition and gene regulation by riboswitches[J]. Biochim Biophys Acta, 2009, 1789(9-10):592-611. [11] Lai EC. RNA sensors and riboswitches:self-regulating messages[J]. Curr Biol, 2003, 13(7):R285-R291. [12] Cochrane JC, Lipchock SV, Strobel SA. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor[J]. Chem Biol, 2007, 14(1):97-105. [13] Blount K, Puskarz I, Penchovsky R, et al. Development and application of a high-throughput assay for glmS riboswitch activators[J]. RNA Biol, 2006, 3(2):77-81. [14] Sinha J, Reyes SJ, Gallivan JP. Reprogramming bacteria to seek and destroy an herbicide[J]. Nat Chem Biol, 2010, 6(6):464-470. [15] 杨会勇, 刁勇, 林俊生, 许瑞安. 新型基因表达调控元件——人工核糖开关的构建及筛选[J]. 生物工程学报, 2012, 28(2):134-143. [16] You M, Litke JL, Jaffrey SR. Imaging metabolite dynamics in living cells using a Spinach-based riboswitch[J]. Proc Natl Acad Sci USA, 2015, 112(21):E2756-E2765. [17] Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo[J]. Nat Struct Mol Biol, 2011, 18(3):359-363. [18] Zhou LB, Zeng AP. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum[J]. ACS Synth Biol, 2015, 4(6):729-734. [19] Zhu X, Wang X, Zhang C, et al. A riboswitch sensor to determine vitamin B12 in fermented foods[J]. Food Chem, 2015, 175:523-528. [20] Ster C, Allard M, Boulanger S, et al. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog[J]. J Dairy Sci, 2013, 96(2):1000-1008. [21] Mulhbacher J, Brouillette E, Allard M, et al. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways[J]. PLoS Pathog, 2010, 6(4):e1000865. [22] Blount KF, Wang JX, Lim J, et al. Antibacterial lysine analogs that target lysine riboswitches[J]. Nat Chem Biol, 2007, 3(1):44-49. [23] Machtel P, Bakowska-Zywicka K, Zywicki M. Emerging applications of riboswitches - from antibacterial targets to molecular tools[J]. J Appl Genet, 2016, 57(4):531-541. [24] Lee ER, Baker JL, Weinberg Z, et al. An allosteric self-splicing ribozyme triggered by a bacterial second messenger[J]. Science, 2010, 329(5993):845-848. [25] Sudarsan N, Lee ER, Weinberg Z, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP[J]. Science, 2008, 321(5887):411-413. [26] Nelson JW, Sudarsan N, Furukawa K, et al. Riboswitches in eubacteria sense the second messenger c-di-AMP[J]. Nat Chem Biol, 2013, 9(12):834-839. [27] Furukawa K, Gu H, Sudarsan N, et al. Identification of ligand analogues that control c-di-GMP riboswitches[J]. ACS Chem Biol, 2012, 7(8):1436-1443. [28] Tang Q, Yin K, Qian H, et al. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein[J]. Sci Rep, 2016, 6:28807. [29] Cochrane JC, Lipchock SV, Strobel SA. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor[J]. Chem Biol, 2007, 14(1):97-105. [30] Lunse CE, Schmidt MS, Wittmann V, et al. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus[J]. ACS Chem Biol, 2011, 6(7):675-678. [31] Ontiveros-Palacios N, Smith AM, Grundy FJ, et al. Molecular basis of gene regulation by the THI-box riboswitch[J]. Mol Microbiol, 2008, 67(4):793-803. [32] Sudarsan N, Cohen-Chalamish S, Nakamura S, et al. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine[J]. Chem Biol, 2005, 12(12):1325-1335. [33] Ott E, Stolz J, Lehmann M, et al. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis[J]. RNA Biol, 2009, 6(3):276-280. [34] Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression[J]. RNA Biol, 2009, 6(2):187-194. [35] Langer S, Hashimoto M, Hobl B, et al. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli[J]. J Bacteriol, 2013, 195(18):4037-4045. [36] Howe JA, Xiao L, Fischmann TO, et al. Atomic resolution mechanistic studies of ribocil:A highly selective unnatural ligand mimic of the E. coli FMN riboswitch[J]. RNA Biol, 2016, 13(10):946-954. |