[1]Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001):192-196. [2] Anderson IC, Cairney JWG. Diversity and ecology of soil fungal communities:increased understanding through the application of molecular techniques[J]. Environ Microbiol, 2004, 6(8):769-779. [3] Schleifer KH. Microbial diversity:facts, problems and prospects[J]. Systematic and Applied Microbiology, 2004, 27(1):3-9. [4]Pace NR, Stahl DA, Lane DJ, et al. Analyzing natural microbial populations by rRNA sequences[J]. ASM American Society for Microbiology News, 1985, 51(1):4-12. [5]Tringe SG, Hugenholtz PA renaissance for the pioneering 16S rRNA gene[J]. Current Opinion in Microbiology, 2008, 11(5):442-446. [6]Handelsman J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biol Rev, 2005, 69(1):195-195. [7]Hatzenpichler R, Connon SA, Goudeau D, et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal- bacterial consortia[J]. Proc Natl Academy of Sciences, 2016, 113(28):E4069-E4078. [8]Biggs MJP, Richards RG, Dalby MJ. Using immuno-scanning electron microscopy for the observation of focal adhesion-substratum interactions at the nano-and microscale in S-phase cells[J]. 3D Cell Culture:Methods and Protocols, 2011:53-60. [9]Urbach E, Vergin KL, Giovannoni SJ. Immunochemical detection and isolation of DNA from metabolically active bacteria[J]. Appl Environ Microbiol, 1999, 65(3):1207-1213. [10]Yin B, Crowley D, Sparovek G, et al. Bacterial functional redundancy along a soil reclamation gradient[J]. Appl Environ Microbiol, 2000, 66(10):4361-4365. [11]Artursson V, Finlay RD, Jansson JK. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species[J]. Environ Microbiol, 2005, 7(12):1952-1966. [12]Allison SD, Czimczik CI, Treseder KK. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Global Change Biology, 2008, 14(5):1156-1168. [13]Goldfarb KC, Karaoz U, Hanson CA, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance[J]. Frontiers in Microbiology, 2011, 2. [14]Mou X, Sun S, Edwards RA, et al. Bacterial carbon processing by generalist species in the coastal ocean[J]. Nature, 2008, 451(7179):708-711. [15]David MM, Cecillon S, Warne BM, et al. Microbial ecology of chlorinated solvent biodegradation[J]. Environ Microbiol, 2015, 17(12):4835-4850. [16]Hamasaki K, Taniguchi A, Tada Y, et al. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing[J]. Gene, 2016, 576(2):650-656. [17] 贾仲君. 稳定性同位素核酸探针技术 DNA-SIP 原理与应用[J]. 微生物学报, 2011, 51(12):1585-1594. [18] Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature, 2000, 403(6770):646-649. [19] Dumont MG, Pommerenke B, Casper P. Using stable isotope prob-ing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment[J]. Environ Microbiol Reports, 2013, 5(5):757-764. [20] Huang WE, Stoecker K, Griffiths R, et al. Raman-FISH:combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function[J]. Environ Microbiol, 2007, 9(8):1878-1889. [21] Bauman JG J, Wiegant J, Borst P, et al. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome-labelled RNA[J]. Experimental Cell Research, 1980, 128(2):485-490. [22]Kubota K. CARD-FISH for environmental microorganisms:technical advancement and future applications[J]. Microbes and Environments, 2013, 28(1):3-12. [23]Bobrow MN, Harris TD, Shaughnessy KJ, et al. Catalyzed reporter deposition, a novel method of signal amplification application to immunoassays[J]. Journal of Immunological Methods, 1989, 125(1):279-285. [24]Bobrow MN, Shaughnessy KJ, Litt GJ. Catalyzed reporter deposition, a novel method of signal amplification:II. Application to membrane immunoassays[J]. Journal of Immunological Methods, 1991, 137(1):103-112. [25] Kerstens HM, Poddighe PJ, Hanselaar AG. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine[J]. Journal of Histochemistry & Cytochemistry, 1995, 43(4):347-352. [26]Kawakami S, Kubota K, Imachi H, et al. Detection of single copy genes by two-pass tyramide signal amplification fluorescence in situ hybridization(Two-Pass TSA-FISH)with single oligonucleotide probes[J]. Microbes and Environments, 2010, 25(1):15-21. [27]Kawakami S, Kubota K, Imachi H, et al. Detection of single copy genes by two-pass tyramide signal amplification fluorescence in situ hybridization(Two-Pass TSA-FISH)with single oligonucleotide probes[J]. Microbes and Environments, 2010, 25(1):15-21. [28]Kenzaka T, Ishidoshiro A, Tani K, et al. Scanning electron microscope imaging of bacteria based on DNA sequence[J]. Letters in Applied Microbiology, 2009, 49(6):796-799. [29]Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10):R245-R249. [30]Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809. [31]Frias-Lopez J, Shi Y, Tyson GW, et al. Microbial community gene expression in ocean surface waters[J]. Proc Natl Academy of Sciences, 2008, 105(10):3805-3810. [32]Kalyuzhnaya MG, Lapidus A, Ivanova N, et al. High-resolution metagenomics targets specific functional types in complex microbial communities[J]. Nature Biotechnology, 2008, 26(9):1029-1034. [33]Korem T, Zeevi D, Suez J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples[J]. Science, 2015, 349(6252):1101-1106. [34]Brown CT, Olm MR, Thomas BC, et al. In situ replication rates for uncultivated bacteria in microbial communities[J]. BioRxiv, 2016:057992. [35]Voorhies AA, Eisenlord SD, Marcus DN, et al. Ecological and genetic interactions between cyanobacteria and viruses in a low-oxygen mat community inferred through metagenomics and metatranscriptomics[J]. Environ Microbiol, 2016, 18(2):358-371. [36]De Filippis F, Genovese A, Ferranti P, et al. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate[J]. Scientific Reports, 2016, 6:21871. [37]Bagchi S, Lamendella R, Strutt S, et al. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor[J]. Scientific Reports, 2016, 6:28327. [38]杨麦云, 陈鹏. 生物正交标记反应研究进展[J]. 化学学报, 2015, 73(8):783-792. [39]Hatzenpichler R, Scheller S, Tavormina PL, et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry[J]. Environ Microbiol, 2014, 16(8):2568-2590. [40]Borneman J. Culture-independent identification of microorganisms that respond to specified stimuli[J]. Appl Environ Microbiol, 1999, 65(8):3398-3400. [41]Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms[J]. Current Opinion in Biotechnology, 2003, 14(3):296-302. [42]Blazewicz SJ, Barnard RL, Daly RA, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities:limitations and uses[J]. The ISME Journal, 2013, 7(11):2061-2068. [43]Hoehler TM, Jorgensen BB. Microbial life under extreme energy limitation[J]. Nature Reviews Microbiology, 2013, 11(2):83-94. [44]Paerl HW, Steppe TF. Scaling up:the next challenge in Environ Microbiol[J]. Environ Microbiol, 2003, 5(11):1025-1038. |