生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 17-27.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0537
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
鲁兆祥1,2,3(), 王夕冉1,2,3, 连新磊1,2,3, 廖晓萍1,2,3, 刘雅红1,2,3, 孙坚1,2,3()
收稿日期:
2022-04-30
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
鲁兆祥,男,硕士研究生,研究方向:细菌耐药性;E-mail: 基金资助:
LU Zhao-xiang1,2,3(), WANG Xi-ran1,2,3, LIAN Xin-lei1,2,3, LIAO Xiao-ping1,2,3, LIU Ya-hong1,2,3, SUN Jian1,2,3()
Received:
2022-04-30
Published:
2022-09-26
Online:
2022-10-11
摘要:
随着各类抗生素被广泛用于治疗细菌感染以及抗生素在临床上的大量使用,驱动了各类抗生素耐药基因的不断进化,导致了耐药问题日趋严重。耐药基因与耐药细菌的广泛传播与普遍流行严重威胁公共卫生体系并引起了巨大的经济损失。值得注意的是,抗生素的广泛施用不仅造成了动物体内耐药细菌的产生,还提高了对环境中微生物的选择压力,间接推动了耐药基因的发展与进化,使环境微生物成为耐药基因新的储库。因此对耐药细菌的广泛监测与新型耐药基因的提前发掘具有重要的临床意义与研究价值。但是传统的耐药性调查手段过度依赖对耐药细菌的培养,难以全面的展现固定生态位中微生物耐药性的全貌。而功能宏基因组学技术利用其表型筛选和高通量测序相结合的优势,不依赖于对携带目标基因的特定细菌的培养,因此在发掘新型功能基因方面有着巨大的优势。本文综述了功能宏基因组在抗生素耐药方面的研究进展,讨论了功能宏基因组学方法在检测新型基因研究中的意义及存在的问题,为后续深入开展对抗生素耐药机制的探究提供了坚实的理论基础。
鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27.
LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics[J]. Biotechnology Bulletin, 2022, 38(9): 17-27.
抗生素类别 Class of antibiotic | 药物 Drug | 耐药率 Resistance rate/% | 参考文献 Reference |
---|---|---|---|
β-内酰胺类 β-lactam antibiotics | 头孢曲松 Ceftriaxone | 81 | [ |
头孢他啶 Ceftazidime | 87.5 | ||
美罗培南 Meropenem | 99.7 | ||
氨苄西林 Ampicillin | 97.5 | [ | |
头孢哌酮-舒巴坦Cefperazone-sulbactam | 98.9 | ||
哌拉西林-他唑巴坦Piperacillin-tazobactam | 98.9 | ||
头孢吡肟 Cefepime | 100 | [ | |
四环素类 Tetracyclines | 四环素 Tetracycline | 85.0 | [ |
替加环素 Tigecycline | 98.9 | [ | |
大环内酯类 Macrolides | 红霉素 Erythrocin | 74.1 | [ |
螺旋霉素I Spiramycin I | 48.1 | ||
阿奇霉素 Azithromycin | 74.1 | ||
克拉霉素 Clarithromycin | 74.1 | ||
林可酰胺类Lincoamide antibiotics | 林可霉素 Lincomycin | 77.8 | |
酮内酯类 Ketolide antibiotics | 泰立霉素 Telithromycin | 77.8 | |
氨基糖苷类 Aminoglycosides | 阿米卡星 Amikacin | 100 | [ |
庆大霉素 Gentamicin | 31.4 | [ | |
多磷类 Polyphosphorous | 磷霉素 Fosfomycin | 66.7 | |
多黏菌素类 Polymyxins | 黏菌素 Colistin | 73.3 | |
磺胺类药物 Sulfonamides | 复方磺胺甲恶唑 Sulfadimidine | 53.3 | |
喹诺酮类 Quinolones | 环丙沙星 Ciprofloxacin | 93.3 | |
左氧氟沙星 Levofloxacin | 100 | [ |
表1 临床抗生素耐药情况
Table 1 Overview of antibiotic resistance in clinical isolates
抗生素类别 Class of antibiotic | 药物 Drug | 耐药率 Resistance rate/% | 参考文献 Reference |
---|---|---|---|
β-内酰胺类 β-lactam antibiotics | 头孢曲松 Ceftriaxone | 81 | [ |
头孢他啶 Ceftazidime | 87.5 | ||
美罗培南 Meropenem | 99.7 | ||
氨苄西林 Ampicillin | 97.5 | [ | |
头孢哌酮-舒巴坦Cefperazone-sulbactam | 98.9 | ||
哌拉西林-他唑巴坦Piperacillin-tazobactam | 98.9 | ||
头孢吡肟 Cefepime | 100 | [ | |
四环素类 Tetracyclines | 四环素 Tetracycline | 85.0 | [ |
替加环素 Tigecycline | 98.9 | [ | |
大环内酯类 Macrolides | 红霉素 Erythrocin | 74.1 | [ |
螺旋霉素I Spiramycin I | 48.1 | ||
阿奇霉素 Azithromycin | 74.1 | ||
克拉霉素 Clarithromycin | 74.1 | ||
林可酰胺类Lincoamide antibiotics | 林可霉素 Lincomycin | 77.8 | |
酮内酯类 Ketolide antibiotics | 泰立霉素 Telithromycin | 77.8 | |
氨基糖苷类 Aminoglycosides | 阿米卡星 Amikacin | 100 | [ |
庆大霉素 Gentamicin | 31.4 | [ | |
多磷类 Polyphosphorous | 磷霉素 Fosfomycin | 66.7 | |
多黏菌素类 Polymyxins | 黏菌素 Colistin | 73.3 | |
磺胺类药物 Sulfonamides | 复方磺胺甲恶唑 Sulfadimidine | 53.3 | |
喹诺酮类 Quinolones | 环丙沙星 Ciprofloxacin | 93.3 | |
左氧氟沙星 Levofloxacin | 100 | [ |
样品来源 Source | 抗生素种类及其耐药基因ARGs and associated antibiotics | 参考文献Reference | |||||
---|---|---|---|---|---|---|---|
酰胺醇类 Phenicols | 氨基糖苷类 Aminoglycosides | β-内酰胺类 β-lactam antibiotics | 四环素类 Tetracyclines | 多药耐药 Multidrug resistance | 其他 Others | ||
土壤 Soil | AAT、aadA、A3PH、aphD、ARPA、KNT、FAT、HARK、APT、ARPB、aac6、aadB、 GAT、GRP、aac、strA | CAT、catB2、catB3、ceoB、CFE、CFRP、cmlA、cmx、CRD、CT、floR | ACT-1、ampc、CARB、L1、mecA、OXA、PSE-1、Sed1、TEM-21、VIM-18 | tet32、tetA、tetA(31)、tetA(33)、tetA(39)、tetA(41)、tetA(B)、tetA(D)、tetA(G)、tetA(M)、tetA(P)、tetB、tetG、tetH、etL、tetM、tetO、tetQ、tetS、tetT、tetV、tetW、tetX、tetX2、tetY | acrA、acrB、adeA、adeB、AmrB、bpeF、ermFS、ermG、ermGM、ermT、ermX、mdfA、mdtF、mdtH、mdtL、mdtO、mef、mexA、mexB、mexD、mexE、mexF、mexG、MLSRP、msrA、oprN、Rpos、sdeY | AcRPB、AFRPB、AEP、AcRPA、AFRPA、fosB、FRP、rosA | [ |
1,2-GDO | [ | ||||||
3-NAT、6-NAT | ARTs | [ | |||||
AAT | Class A、B、C、D、Metallo beta-lactamase | [ | |||||
Bifunctional beta-lactamase | [ | ||||||
2-NAT、2-OXO-DH、3-NAT、6-NAT、AAdT、ATIII、EEL、FAA、GBD、HAD、ICMT、ML、PM、NSDH、TL、tRNAs | AL、STK、otrC、tet(34)、tet(37)、tetV、tetX | ABC、RND | [ | ||||
水 Water | aacA4、aadA、aadB、ereA、strA、strB | ceoB、cmlA | blaA | tet33、tet34、tetC、tetL、tetM、tetX | acrB、mexB、mexF | smeE、ermF、macB、bacA、sul1、sul2 | [ |
strA、strB | tetL | qnrA、mfeE mphB | [ | ||||
K+ transport ptn、3-NAT、PDH、GNAT、AAdt、A3PH、6-NAT、GT、MetRS | TEM beta-lactamase | RecX、RA | [ | ||||
污泥 Sludge | aa6iia、aac6ib、aadD、ant2ia、ant3ia、ant6ia、aph33ib、aph6id、ereA | catB3、ceoB、cml_e3、cmle_8 | bl2D_pse3、bl2D_oxa5、bl2_veb、bl2D_oxa10 | tet32、tet33、tetA、tetC、tetG、tetO、tetPa、tetPb、tetV、tetW、tetX | acrB、ermB、ermC、ermQ、ermT、mdtF、mexB、mexD、mexF、mexW、mexY | smeB、smeE、lnuA、macB、mefA、rosA、rosB、bacA、arnA、sul1、sul2 | [ |
aac、aadA、AGRPA、aph | Class A BL、NPS-1、 OXA-1、OXA-10、OXA-2、VEB-5 | tet39、tetA、tetC、tetG、tetM、tetO、tetP、tetS、tetW、tetX | [ | ||||
aadA、aadB、aphA-2、strA、strB | catB、cmlA、floR | blaCFX-a、laOXA-10、 blaVEB-5、blaVEB-3 | tet33、tet36、tet39、tet40、tetA(P)、tetB(P)、tetG、tetM、tetO、tetW | acrB、adeA、ermB、mdtF、mexB、mexF、mexW | smeB、smeE、macB、bacA、sul1、sul2 | [ | |
blaDWA、blaDWA2、blaDWA3、blaDWA4、blaDWB1 | [ |
表2 宏基因组学在抗性基因筛选的应用
Table 2 Application of metagenomics in resistance gene screening
样品来源 Source | 抗生素种类及其耐药基因ARGs and associated antibiotics | 参考文献Reference | |||||
---|---|---|---|---|---|---|---|
酰胺醇类 Phenicols | 氨基糖苷类 Aminoglycosides | β-内酰胺类 β-lactam antibiotics | 四环素类 Tetracyclines | 多药耐药 Multidrug resistance | 其他 Others | ||
土壤 Soil | AAT、aadA、A3PH、aphD、ARPA、KNT、FAT、HARK、APT、ARPB、aac6、aadB、 GAT、GRP、aac、strA | CAT、catB2、catB3、ceoB、CFE、CFRP、cmlA、cmx、CRD、CT、floR | ACT-1、ampc、CARB、L1、mecA、OXA、PSE-1、Sed1、TEM-21、VIM-18 | tet32、tetA、tetA(31)、tetA(33)、tetA(39)、tetA(41)、tetA(B)、tetA(D)、tetA(G)、tetA(M)、tetA(P)、tetB、tetG、tetH、etL、tetM、tetO、tetQ、tetS、tetT、tetV、tetW、tetX、tetX2、tetY | acrA、acrB、adeA、adeB、AmrB、bpeF、ermFS、ermG、ermGM、ermT、ermX、mdfA、mdtF、mdtH、mdtL、mdtO、mef、mexA、mexB、mexD、mexE、mexF、mexG、MLSRP、msrA、oprN、Rpos、sdeY | AcRPB、AFRPB、AEP、AcRPA、AFRPA、fosB、FRP、rosA | [ |
1,2-GDO | [ | ||||||
3-NAT、6-NAT | ARTs | [ | |||||
AAT | Class A、B、C、D、Metallo beta-lactamase | [ | |||||
Bifunctional beta-lactamase | [ | ||||||
2-NAT、2-OXO-DH、3-NAT、6-NAT、AAdT、ATIII、EEL、FAA、GBD、HAD、ICMT、ML、PM、NSDH、TL、tRNAs | AL、STK、otrC、tet(34)、tet(37)、tetV、tetX | ABC、RND | [ | ||||
水 Water | aacA4、aadA、aadB、ereA、strA、strB | ceoB、cmlA | blaA | tet33、tet34、tetC、tetL、tetM、tetX | acrB、mexB、mexF | smeE、ermF、macB、bacA、sul1、sul2 | [ |
strA、strB | tetL | qnrA、mfeE mphB | [ | ||||
K+ transport ptn、3-NAT、PDH、GNAT、AAdt、A3PH、6-NAT、GT、MetRS | TEM beta-lactamase | RecX、RA | [ | ||||
污泥 Sludge | aa6iia、aac6ib、aadD、ant2ia、ant3ia、ant6ia、aph33ib、aph6id、ereA | catB3、ceoB、cml_e3、cmle_8 | bl2D_pse3、bl2D_oxa5、bl2_veb、bl2D_oxa10 | tet32、tet33、tetA、tetC、tetG、tetO、tetPa、tetPb、tetV、tetW、tetX | acrB、ermB、ermC、ermQ、ermT、mdtF、mexB、mexD、mexF、mexW、mexY | smeB、smeE、lnuA、macB、mefA、rosA、rosB、bacA、arnA、sul1、sul2 | [ |
aac、aadA、AGRPA、aph | Class A BL、NPS-1、 OXA-1、OXA-10、OXA-2、VEB-5 | tet39、tetA、tetC、tetG、tetM、tetO、tetP、tetS、tetW、tetX | [ | ||||
aadA、aadB、aphA-2、strA、strB | catB、cmlA、floR | blaCFX-a、laOXA-10、 blaVEB-5、blaVEB-3 | tet33、tet36、tet39、tet40、tetA(P)、tetB(P)、tetG、tetM、tetO、tetW | acrB、adeA、ermB、mdtF、mexB、mexF、mexW | smeB、smeE、macB、bacA、sul1、sul2 | [ | |
blaDWA、blaDWA2、blaDWA3、blaDWA4、blaDWB1 | [ |
[1] |
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics[J]. Future Microbiol, 2018, 13: 241-262.
doi: 10.2217/fmb-2017-0172 pmid: 29319341 |
[2] | 许雪冉, 孙强, 阴佳, 等. 抗生素耐药性全球治理的发展历程及对中国的启示[J]. 中国卫生政策研究, 2019, 12(5): 38-43. |
Xu XR, Sun Q, Yin J, et al. Policy evolution of China's antibiotic resistance governance and its enlightenment[J]. Chin J Heal Policy, 2019, 12(5): 38-43. | |
[3] | Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline at the end of 2015[J]. J Antibiot(Tokyo), 2017, 70(1): 3-24. |
[4] | McEwen SA, Collignon PJ. Antimicrobial resistance: a one health perspective[J]. Microbiol Spectr, 2018, 6(2). |
[5] |
van Puyvelde S, Deborggraeve S, Jacobs J. Why the antibiotic resistance crisis requires a one health approach[J]. Lancet Infect Dis, 2018, 18(2): 132-134.
doi: S1473-3099(17)30704-1 pmid: 29198739 |
[6] |
Forsberg KJ, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098): 1107-1111.
doi: 10.1126/science.1220761 pmid: 22936781 |
[7] | Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. PNAS, 2018, 115(15): E3463-E3470. |
[8] |
Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria[J]. Essays Biochem, 2017, 61(1): 49-59.
doi: 10.1042/EBC20160063 pmid: 28258229 |
[9] |
Vasoo S, Barreto JN, Tosh PK. Emerging issues in gram-negative bacterial resistance[J]. Mayo Clin Proc, 2015, 90(3): 395-403.
doi: 10.1016/j.mayocp.2014.12.002 URL |
[10] |
Farrell DJ, Sader HS, Flamm RK, et al. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres(2012)[J]. Int J Antimicrob Agents, 2014, 43(6): 533-539.
doi: 10.1016/j.ijantimicag.2014.01.032 URL |
[11] |
Zhao SY, Zhang J, Zhang YL, et al. Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae(ESBL-E)carriage derived from residents of seven nursing homes in western Shanghai, China[J]. Epidemiol Infect, 2016, 144(4): 695-702.
doi: 10.1017/S0950268815001879 pmid: 26260355 |
[12] |
Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms[J]. Arch Microbiol, 1996, 165(6): 359-369.
pmid: 8661929 |
[13] |
Garcia PG, Silva VL, Diniz CG. Occurrence and antimicrobial drug susceptibility patterns of commensal and diarrheagenic Escherichia coli in fecal microbiota from children with and without acute diarrhea[J]. J Microbiol, 2011, 49(1): 46-52.
doi: 10.1007/s12275-011-0172-8 URL |
[14] |
Speer BS, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance[J]. Clin Microbiol Rev, 1992, 5(4): 387-399.
doi: 10.1128/CMR.5.4.387 pmid: 1423217 |
[15] |
Zhu YT, Lai HM, Zou LK, et al. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China[J]. Int J Food Microbiol, 2017, 259: 43-51.
doi: 10.1016/j.ijfoodmicro.2017.07.023 URL |
[16] | 袁余, 王远芳, 戴仲秋, 等. 不同标本类型分离的肠球菌临床耐药情况分析[J]. 现代预防医学, 2017, 44(13): 2493-2496. |
Yuan Y, Wang YF, Dai ZQ, et al. Antimicrobial resistance of Enterococcus spp. isolated from different type of specimens[J]. Mod Prev Med, 2017, 44(13): 2493-2496. | |
[17] | Omar MA, Hammad MA, Nagy DM, et al. Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl acetaldehyde[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 136 Pt C: 1760-1766. |
[18] |
Prayle A, Watson A, Fortnum H, et al. Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis[J]. Thorax, 2010, 65(7): 654-658.
doi: 10.1136/thx.2009.131532 pmid: 20627927 |
[19] |
Watanabe N, Bergamaschi BA, Loftin KA, et al. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields[J]. Environ Sci Technol, 2010, 44(17): 6591-6600.
doi: 10.1021/es100834s pmid: 20698525 |
[20] |
Zuo PX, Yu PF, Alvarez PJJ. Aminoglycosides antagonize bacteriophage proliferation, attenuating phage suppression of bacterial growth, biofilm formation, and antibiotic resistance[J]. Appl Environ Microbiol, 2021, 87(15): e0046821.
doi: 10.1128/AEM.00468-21 URL |
[21] | 谭红丽, 程雪琴, 王勇, 等. 多耐鲍曼不动杆菌分子流行病学分析[J]. 疾病监测, 2015, 30(1): 8-13. |
Tan HL, Cheng XQ, Wang Y, et al. Molecular characterization of multi-drug-resistant Acinetobacter baumannii isolated from patients in a hospital in Yunnan[J]. Dis Surveillance, 2015, 30(1): 8-13. | |
[22] | 姚健, 邵雷, 刘鹏宇, 等. 临床分离金黄色葡萄球菌对大环内酯类抗生素耐药性及耐药基因的分析[J]. 药物生物技术, 2016, 23(4): 291-295. |
Yao J, Shao L, Liu PY, et al. Macrolide-resistant phenotypes and genotypes of Staphylococcus aureus isolated from clinical samples[J]. Pharm Biotechnol, 2016, 23(4): 291-295. | |
[23] |
D'Costa VM, McGrann KM, Hughes DW, et al. Sampling the antibiotic resistome[J]. Science, 2006, 311(5759): 374-377.
pmid: 16424339 |
[24] |
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638.
doi: 10.1126/science.1110591 pmid: 15831718 |
[25] |
Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR[J]. J Clin Microbiol, 2002, 40(6): 2153-2162.
doi: 10.1128/JCM.40.6.2153-2162.2002 pmid: 12037080 |
[26] |
Mullany P. Functional metagenomics for the investigation of antibiotic resistance[J]. Virulence, 2014, 5(3): 443-447.
doi: 10.4161/viru.28196 pmid: 24556726 |
[27] |
Popowska M, Rzeczycka M, Miernik A, et al. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes[J]. Antimicrob Agents Chemother, 2012, 56(3): 1434-1443.
doi: 10.1128/AAC.05766-11 pmid: 22203596 |
[28] |
Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities[J]. Annu Rev Genet, 2004, 38: 525-552.
pmid: 15568985 |
[29] |
Berglund F, Marathe NP, Österlund T, et al. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data[J]. Microbiome, 2017, 5(1): 134.
doi: 10.1186/s40168-017-0353-8 pmid: 29020980 |
[30] |
Subirats J, Sànchez-Melsió A, Borrego CM, et al. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes[J]. Int J Antimicrob Agents, 2016, 48(2): 163-167.
doi: 10.1016/j.ijantimicag.2016.04.028 URL |
[31] |
dos Santos DFK, Istvan P, Quirino BF, et al. Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments[J]. Microb Ecol, 2017, 73(2): 479-491.
doi: 10.1007/s00248-016-0866-x pmid: 27709246 |
[32] |
Boolchandani M, Patel S, Dantas G. Functional metagenomics to study antibiotic resistance[J]. Methods Mol Biol, 2017, 1520: 307-329.
doi: 10.1007/978-1-4939-6634-9_19 pmid: 27873261 |
[33] |
Mori T, Suenaga H, Miyazaki K. A metagenomic approach to the identification of UDP-glucose 4-epimerase as a menadione resistance protein[J]. Biosci Biotechnol Biochem, 2008, 72(6): 1611-1614.
doi: 10.1271/bbb.70815 URL |
[34] |
Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359.
doi: 10.1126/science.1124234 pmid: 16741115 |
[35] |
Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes[J]. DNA Res, 2007, 14(4): 169-181.
doi: 10.1093/dnares/dsm018 pmid: 17916580 |
[36] |
Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis[J]. Nat Rev Microbiol, 2008, 6(2): 121-131.
doi: 10.1038/nrmicro1817 pmid: 18180751 |
[37] |
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484.
doi: 10.1038/nature07540 URL |
[38] |
Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
doi: 10.1038/nature08821 URL |
[39] |
Tasse L, Bercovici J, Pizzut-Serin S, et al. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes[J]. Genome Res, 2010, 20(11): 1605-1612.
doi: 10.1101/gr.108332.110 pmid: 20841432 |
[40] |
Gloux K, Berteau O, El Oumami H, et al. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome[J]. PNAS, 2011, 108(Suppl 1): 4539-4546.
doi: 10.1073/pnas.1000066107 URL |
[41] |
Sleator RD, Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence[J]. FEMS Microbiol Rev, 2002, 26(1): 49-71.
pmid: 12007642 |
[42] |
Gralla JD, Huo YX. Remodeling and activation of Escherichia coli RNA polymerase by osmolytes[J]. Biochemistry, 2008, 47(50): 13189-13196.
doi: 10.1021/bi801075x pmid: 19053283 |
[43] |
Culligan EP, Sleator RD, Marchesi JR, et al. Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome[J]. ISME J, 2012, 6(10): 1916-1925.
doi: 10.1038/ismej.2012.38 pmid: 22534607 |
[44] |
Xu B, Yang FY, Xiong CY, et al. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome[J]. J Microbiol Biotechnol, 2014, 24(4): 447-452.
doi: 10.4014/jmb.1310.10121 URL |
[45] |
Kanokratana P, Eurwilaichitr L, Pootanakit K, et al. Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation[J]. J Biosci Bioeng, 2015, 119(4): 384-391.
doi: 10.1016/j.jbiosc.2014.09.010 pmid: 25441441 |
[46] |
Adam N, Perner M. Activity-based screening of metagenomic libraries for hydrogenase enzymes[J]. Methods Mol Biol, 2017, 1539: 261-270.
pmid: 27900696 |
[47] | Castillo Villamizar GA, Nacke H, Boehning M, et al. Functional metagenomics reveals an overlooked diversity and novel features of soil-derived bacterial phosphatases and phytases[J]. mBio, 2019, 10(1): e01966-e01918. |
[48] |
Martiny AC, Martiny JBH, Weihe C, et al. Functional metagenomics reveals previously unrecognized diversity of antibiotic resistance genes in gulls[J]. Front Microbiol, 2011, 2: 238.
doi: 10.3389/fmicb.2011.00238 pmid: 22347872 |
[49] | Gudeta DD, Bortolaia V, Pollini S, et al. Expanding the repertoire of carbapenem-hydrolyzing metallo-β-lactamases by functional metagenomic analysis of soil microbiota[J]. Front Microbiol, 2016, 7: 1985. |
[50] |
Gasparrini AJ, Markley JL, Kumar H, et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance[J]. Commun Biol, 2020, 3(1): 241.
doi: 10.1038/s42003-020-0966-5 pmid: 32415166 |
[51] |
McGivern BB, McDonell RK, Morris SK, et al. Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics[J]. Plasmid, 2021, 114: 102563.
doi: 10.1016/j.plasmid.2021.102563 URL |
[52] |
McGarvey KM, Queitsch K, Fields S. Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library[J]. Appl Environ Microbiol, 2012, 78(6): 1708-1714.
doi: 10.1128/AEM.06759-11 URL |
[53] |
Zhang T, Zhang XX, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge[J]. PLoS One, 2011, 6(10): e26041.
doi: 10.1371/journal.pone.0026041 URL |
[54] |
Moon K, Jeon JH, Kang I, et al. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes[J]. Microbiome, 2020, 8(1): 75.
doi: 10.1186/s40168-020-00863-4 pmid: 32482165 |
[55] |
Marathe NP, Janzon A, Kotsakis SD, et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian River sediments contaminated with antibiotic production waste[J]. Environ Int, 2018, 112: 279-286.
doi: S0160-4120(17)31996-7 pmid: 29316517 |
[56] |
Fang H, Wang HF, Cai L, et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environ Sci Technol, 2015, 49(2): 1095-1104.
pmid: 25514174 |
[57] |
dos Santos DFK, Istvan P, Noronha EF, et al. New dioxygenase from metagenomic library from Brazilian soil: insights into antibiotic resistance and bioremediation[J]. Biotechnol Lett, 2015, 37(9): 1809-1817.
doi: 10.1007/s10529-015-1861-x pmid: 25994583 |
[58] |
Donato JJ, Moe LA, Converse BJ, et al. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins[J]. Appl Environ Microbiol, 2010, 76(13): 4396-4401.
doi: 10.1128/AEM.01763-09 URL |
[59] |
Su JQ, Wei B, Xu CY, et al. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China[J]. Environ Int, 2014, 65: 9-15.
doi: 10.1016/j.envint.2013.12.010 pmid: 24412260 |
[60] |
Wang Z, Zhang XX, Huang K, et al. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant[J]. PLoS One, 2013, 8(10): e76079.
doi: 10.1371/journal.pone.0076079 URL |
[61] |
Yang J, Wang C, Shu C, et al. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens[J]. Microb Ecol, 2013, 65(4): 975-981.
doi: 10.1007/s00248-013-0187-2 pmid: 23370726 |
[62] |
Amos GCA, Zhang L, Hawkey PM, et al. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes[J]. Vet Microbiol, 2014, 171(3/4): 441-447.
doi: 10.1016/j.vetmic.2014.02.017 URL |
[63] |
Huang K, Tang J, Zhang XX, et al. A comprehensive insight into tetracycline resistant bacteria and antibiotic resistance genes in activated sludge using next-generation sequencing[J]. Int J Mol Sci, 2014, 15(6): 10083-10100.
doi: 10.3390/ijms150610083 pmid: 24905407 |
[64] |
Yang Y, Li B, Ju F, et al. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach[J]. Environ Sci Technol, 2013, 47(18): 10197-10205.
doi: 10.1021/es4017365 pmid: 23919449 |
[65] |
Wang XR, Lian XL, Su TT, et al. Duck wastes as a potential reservoir of novel antibiotic resistance genes[J]. Sci Total Environ, 2021, 771: 144828.
doi: 10.1016/j.scitotenv.2020.144828 URL |
[66] |
Katz M, Hover BM, Brady SF. Culture-independent discovery of natural products from soil metagenomes[J]. J Ind Microbiol Biotechnol, 2016, 43(2/3): 129-141.
doi: 10.1007/s10295-015-1706-6 URL |
[67] |
Craig JW, Chang FY, Kim JH, et al. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria[J]. Appl Environ Microbiol, 2010, 76(5): 1633-1641.
doi: 10.1128/AEM.02169-09 URL |
[68] |
Liebl W, Angelov A, Juergensen J, et al. Alternative hosts for functional(meta)genome analysis[J]. Appl Microbiol Biotechnol, 2014, 98(19): 8099-8109.
doi: 10.1007/s00253-014-5961-7 URL |
[69] |
Karkman A, Do TT, Walsh F, et al. Antibiotic-resistance genes in waste water[J]. Trends Microbiol, 2018, 26(3): 220-228.
doi: S0966-842X(17)30210-X pmid: 29033338 |
[70] |
Spencer SJ, Tamminen MV, Preheim SP, et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers[J]. ISME J, 2016, 10(2): 427-436.
doi: 10.1038/ismej.2015.124 pmid: 26394010 |
[71] |
Lan F, Demaree B, Ahmed N, et al. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding[J]. Nat Biotechnol, 2017, 35(7): 640-646.
doi: 10.1038/nbt.3880 pmid: 28553940 |
[72] | Axelsson C, Rehnstam-Holm AS, Nilson B. Rapid detection of antibiotic resistance in positive blood cultures by MALDI-TOF MS and an automated and optimized MBT-ASTRA protocol for Escherichia coli and Klebsiella pneumoniae[J]. Infect Dis(Lond), 2020, 52(1): 45-53. |
[73] | 龙永艳, 倪贤生, 李端, 等. 食品从业人员肠道细菌CTX-M型超广谱β-内酰胺酶的携带状况研究[J]. 疾病监测, 2016, 31(5): 433-436. |
Long YY, Ni XS, Li D, et al. Carriage of CTX-M type extended-spectrum β-lactamase in intestinal bacteria isolated from people engaged in food processing[J]. Dis Surveillance, 2016, 31(5): 433-436. | |
[74] | 张利锋, 齐静, 罗成旺, 等. 鸡源大肠杆菌β-内酰胺类药敏及blaCTX-M基因携带状况的探讨[J]. 检验医学与临床, 2016, 13(9): 1153-1155. |
Zhang LF, Qi J, Luo CW, et al. Discussion of antimicrobial resistances and β-lactamases CTX subtypes of Escherichia coli strains isolated from chickens[J]. Lab Med Clin, 2016, 13(9): 1153-1155. | |
[75] |
Finley RL, Collignon P, Larsson DGJ, et al. The scourge of antibiotic resistance: the important role of the environment[J]. Clin Infect Dis, 2013, 57(5): 704-710.
doi: 10.1093/cid/cit355 pmid: 23723195 |
[76] | Gaze WH, Krone SM, Larsson DGJ, et al. Influence of humans on evolution and mobilization of environmental antibiotic resistome[J]. Emerg Infect Dis, 2013, 19(7): e120871. |
[1] | 周振超, 郑吉, 帅馨怡, 林泽俊, 陈红. 高通量分析人类粪便、皮肤和水环境中共享抗生素抗性基因的分布[J]. 生物技术通报, 2023, 39(7): 288-297. |
[2] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[3] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[4] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[5] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[6] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[7] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[8] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[9] | 朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73. |
[10] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[11] | 马涛, 陆唯, 李松励, 樊霞. 畜禽微生物耐药组研究进展[J]. 生物技术通报, 2021, 37(1): 113-122. |
[12] | 王丹蕊, 沈文丽, 魏子艳, 王尚, 邓晔. 单细胞测序技术在微生物生态领域中的应用[J]. 生物技术通报, 2020, 36(10): 237-246. |
[13] | 冯高, 张昱晨, 苟敏, 陈娅婷. 丁酸氧化菌群对抗生素及活性炭协同作用响应[J]. 生物技术通报, 2019, 35(8): 64-76. |
[14] | 杨秀清, 陈彦梅, 吴瑞薇, 王保玉, 韩作颖. 煤地质环境微生物总基因组DNA提取方法的优化[J]. 生物技术通报, 2018, 34(9): 177-183. |
[15] | 王军强, 汪晶晶, 王琦, 马桂珍, 暴增海, 王淑芳, 周向红. 海洋细菌L1-9双抗菌株的定殖能力及其对黄瓜枯萎病的防治作用[J]. 生物技术通报, 2016, 32(6): 193-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||