[1]Buckler ES, Gaut BS, McMullen MD. Molecular and functional diversity of maize[J]. Curr Opin Plant Biol, 2006, 9(2):172-176. [2]Collard BC, Mackill DJ. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1491):557-572. [3]盖钧镒, 赵团结. 中国大豆育种的核心祖先亲本分析[J]. 南京农业大学学报, 2001, 24(2):20-23. [4]孙琦, 李文才, 于彦丽, 等. 美国商业玉米种质来源及系谱分析[J]. 玉米科学, 2016, 24(1):8-13. [5]McCouch S. Diversifying selection in plant breeding[J]. PLoS Biol, 2004, 2(10):e347. [6]Slade AJ, Fuerstenberg SI, Loeffler D, et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING[J]. Nat Biotechnol, 2005, 23(1):75-81. [7]Uitdewilligen J, Wolters AMA, D’hoop BB, et al. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato[J]. PLoS One, 2013, 8(5):e62355. [8]Munoz-Amatriain M, Cuesta-Marcos A, Hayes PM, et al. Barley genetic variation:implications for crop improvement[J]. Briefings in Functional Genomics, 2014, 13(4):341-350. [9]匡猛, 杨伟华, 许红霞, 等. 分子标记技术在棉花品种鉴定上的研究进展[J]. 棉花学报, 2009, 21(4):330-334. [10]Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus[J]. Theor Appl Genet, 2004, 108(7):1212-1220. [11]王昊龙, 韩俊杰, 李淼淼, 等. 功能标记的开发及在禾谷类作物中的应用[J]. 核农学报, 2014, 28(11):1963-1971. [12]He C, Holme J, Anthony J. SNP genotyping:the KASP assay[J]. Methods Mol Biol, 2014, 1145:75-86. [13] Ganal MW, Durstewitz G, Polley A, et al. A large maize(Zea mays L.)SNP genotyping array:development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome[J], PLoS One, 2011, 6(12):e28334. [14]Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing[J]. Genome Res, 2009, 19(6):1124-1132. [15]Yamamoto T, Nagasaki H, Yonemaru J, et al. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms[J]. BMC Genomics, 2010, 11:267. [16]Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes[J]. Nat Biotechnol, 2012, 30(1):105-111. [17]Li YD, Chu ZZ, Liu XG, et al. A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants[J]. J Integr Plant Biol, 2010, 52(12):1036-1042. [18]He C, Holme J, Anthony J. SNP genotyping:the KASP assay[J]. Methods Mol Biol, 2014, 1145:75-86. [19]Zhou G, Zhang Q, Tan C, et al. Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map[J]. BMC Genomics, 2015, 16(1):804. [20]Graves H, Rayburn AL, Gonzalez-Hernandez JL, et al. Validating DNA polymorphisms using KASP assay in prairie cordgrass(Spartina pectinata Link)Populations in the U. S[J]. Front Plant Sci, 2015, 6:1271. [21]张小燕, 左明雪, 张占军, 等. 用基因芯片检测单核苷酸多态性反应原理[J]. 中国生物工程杂志, 2005, 25(11):52-56. [22]Peace C, Bassil N, Main D, et al. Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry[J]. PLoS One, 2012, 7(12):e48305. [23]Chagne D, Crowhurst RN, Troggio M, et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple[J]. PLoS One, 2012, 7(2):e31745. [24]Cavanagh CR, Chao S, Wang S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars[J]. PNAS, 2013, 110(20):8057-8062. [25]Wang S, Wong D, Forrest K, et al. Characterization of polyploid wheat genomic diversity using a high-density 90, 000 single nucleotide polymorphism array[J]. Plant Biotechnol J, 2014, 12(6):787-796. [26]Unterseer S, Bauer E, Haberer G, et al. A powerful tool for genome analysis in maize:development and evaluation of the high density 600 k SNP genotyping array[J]. BMC Genomics, 2014, 15:823. [27]Chen H, He H, Zhou F, et al. Development of genomics-based genotyping platforms and their applications in rice breeding[J]. Curr Opin Plant Biol, 2013, 16(2):247-254. [28]Yu H, Xie W, Li J, et al. A whole-genome SNP array(RICE6K)for genomic breeding in rice[J]. Plant Biotechnol J, 2014, 12(1):28-37. [29]Singh N, Jayaswal PK, Panda K, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice[J]. Sci Rep, 2015, 5:11600. [30]McCouch SR, Wright MH, Tung CW, et al. Open access resources for genome-wide association mapping in rice[J]. Nat Commun, 2016, 7:10532. [31]Li JY, Wang J and Zeigler RS. The 3, 000 rice genomes project:new opportunities and challenges for future rice research[J]. Gigascience, 2014, 3:8. [32]Duran C, Appleby N, Clark T, et al. AutoSNPdb:an annotated single nucleotide polymorphism database for crop plants[J]. Nucleic Acids Res, 2009, 37(suppl_1):D951-953. [33]Nijveen H, van Kaauwen M, Esselink DG, et al. QualitySNPng:a user-friendly SNP detection and visualization tool[J]. Nucleic Acids Res, 2013, 41(W1):W587-590. [34]Azam S, Rathore A, Shah T M, Telluri M, et al. An integrated SNP mining and utilization(ISMU)pipeline for next generation sequencing data[J]. PLoS One, 2014, 9(7):e101754. [35]Dereeper A, Homa F, Andres G, et al. SNiPlay3:a web-based application for exploration and large scale analyses of genomic variations[J]. Nucleic Acids Res, 2015, 43(W1):W295-300. [36]Yonemaru J-i, Ebana K, Yano M. HapRice, an SNP Haplotype Database and a Web Tool for Rice[J], Plant Cell Physiol, 2014, 55(1):e9. [37]Zhao H, Yao W, Ouyang Y, et al. RiceVarMap:a comprehensive database of rice genomic variations[J]. Nucleic Acids Res, 2015, 43(D1):D1018-1022. [38]Consortium IRP. Information Commons for Rice(IC4R)[J]. Nucleic Acids Res, 2016, 44(D1):D1172-1180. [39]Wilkinson PA, Winfield MO, Barker GL, et al. CerealsDB 3. 0:expansion of resources and data integration[J]. BMC Bioinformatics, 2016, 17:256. [40]He Z, Zhai W, Wen H, et al. Two evolutionary histories in the genome of rice:the roles of domestication genes[J]. PLoS Genet, 2011, 7(6):e1002100. [41]Lestari P, Lee G, Ham TH, et al. Single nucleotide polymorphisms and haplotype diversity in rice sucrose synthase 3[J]. J Hered, 2011, 102(6):735-746. [42]Yonemaru J, Yamamoto T, Ebana K, et al. Genome-wide haplotype changes produced by artificial selection during modern rice breeding in Japan[J]. PLoS One, 2012, 7(3):e32982. [43]Wang H, Vieira FG, Crawford JE, et al. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice[J]. Genome Res, 2017, 27:1-10. [44]Yang W, Guo Z, Huang C, et al. 15 genetic variation in rice[J]. Nat Commun, 2014, 5:5087. [45]Xie W, Wang G, Yuan M, et al. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection[J]. Proc Natl Acad Sci USA, 2015, 112(39):E5411-5419. [46]Biscarini F, Cozzi P, Casella L, et al. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions[J]. PLoS One, 2016, 11(5):e0155425. [47]Huang X, Yang S, Gong J, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature. 2016, 537(7622):629-633. [48]Rebolledo M C, Dingkuhn M, Courtois B, et al. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping[J]. J Exp Bot, 2015, 66(18):5555-5566. [49]Kumar V, Singh A, Mithra SV, et al. Genome-wide association mapping of salinity tolerance in rice(Oryza sativa)[J]. DNA Res, 2015, 22(2):133-145. [50]Rahman MA, Thomson MJ, Shah EAM, et al. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization[J]. Ann Bot, 2016, 117(6):1083-1097. [51]Kang H, Wang Y, Peng S, et al. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae[J]. Mol Plant Pathol, 2016, 17(6):959-972. [52]宁洽, 刘文国, 杨伟光, 等. SNP 标记在玉米研究上的应用进展[J]. 玉米科学, 2017, 25(1):57-61. [53]吕锐玲, 周强. 植物基因组选择及其应用研究进展[J]. 中国农学通报, 2016, 32(15):107-11. |