生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 58-71.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
• 作物品质遗传与改良专题(专题主编: 刘巧泉 教授) • 上一篇 下一篇
收稿日期:
2021-11-03
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
刘巧泉,男,博士,教授,研究方向:水稻品质性状遗传改良;E-mail: qqliu@yzu.edu.cn作者简介:
杨青青,女,硕士研究生,研究方向:水稻主要品质性状KASP标记的开发;E-mail: 2644178488@qq.com
基金资助:
YANG Qing-qing(), TANG Jia-qi, ZHANG Chang-quan, GAO Ji-ping, LIU Qiao-quan()
Received:
2021-11-03
Published:
2022-04-26
Online:
2022-05-06
摘要:
随着基因测序技术的发展,植物基因组数据越来越丰富,其中的单核苷酸多态性(single nucleotide polymorphism,SNP)数据由于具有高密度、高通量和易于自动化分析等特点而被广泛用于分子标记的开发和应用。竞争性等位基因特异性PCR(kompetitive allele-specific PCR,KASP)技术是近些年来发展起来的一种主要基于SNP的高通量基因分型技术。该技术由于其高通量、低成本和可操作性强等优点而在农作物性状改良等领域具有很大的应用潜力。本文介绍了KASP技术的发展、原理和方法步骤,综述了该技术在主要农作物的种质资源鉴定、分子标记辅助育种、基因定位和种子纯度鉴定等遗传育种中的应用,并讨论了该技术的优缺点,以期为今后农作物育种研究提供参考依据。
杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望[J]. 生物技术通报, 2022, 38(4): 58-71.
YANG Qing-qing, TANG Jia-qi, ZHANG Chang-quan, GAO Ji-ping, LIU Qiao-quan. Application and Prospect of KASP Marker Technology in Main Crops[J]. Biotechnology Bulletin, 2022, 38(4): 58-71.
作物Crops | 应用Application | 参考文献 Reference |
---|---|---|
水稻 Oryza sativa | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
小麦 Triticum aestivum | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
玉米 Zea mays | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
种子纯度鉴定 | [ | |
大白菜 Brassica rapa | 种质资源鉴定与亲缘关系研究 | [ |
遗传图谱构建与基因定位 | [ | |
西兰花 Brassica oleracea | 种质资源鉴定与亲缘关系研究 | [ |
葡萄 Vitis vinifera | 种质资源鉴定与亲缘关系研究 | [ |
小扁豆 Lens culinaris | 种质资源鉴定与亲缘关系研究 | [ |
咖啡 Coffea arabica | 种质资源鉴定与亲缘关系研究 | [ |
花生 Arachis hypogaea | 种质资源鉴定与亲缘关系研究 | [ |
遗传图谱构建与基因定位 | [ | |
豇豆 Vigna unguiculata | 分子标记辅助育种 | [ |
番茄 Lycopersicon esculentum | 分子标记辅助育种 | [ |
西瓜 Citrullus lanatus | 分子标记辅助育种 | [ |
高粱 Sorghum bicolor | 分子标记辅助育种 | [ |
遗传图谱构建与基因定位 | [ | |
桃 Amygdalus persica | 分子标记辅助育种 | [ |
马铃薯 Solanum tuberosum | 分子标记辅助育种 | [ |
苹果 Malus pumila | 分子标记辅助育种 | [ |
遗传图谱构建与基因定位 | [ | |
辣椒 Capsicum annuum | 分子标记辅助育种 | [ |
向日葵 Helianthus annuus | 分子标记辅助育种 | [ |
大豆 Glycine max | 遗传图谱构建与基因定位 | [ |
洋葱 Allium cepa | 遗传图谱构建与基因定位 | [ |
瓠瓜 Lagenaria siceraria | 种子纯度鉴定 | [ |
棉花 Gossypium hirsutum | 种子纯度鉴定 | [ |
大麦 Hordeum vulgare | 种子纯度鉴定 | [ |
萝卜 Raphanus sativus | 种子纯度鉴定 | [ |
表1 KASP技术在主要农作物中的应用
Table 1 Application of KASP technology in crops
作物Crops | 应用Application | 参考文献 Reference |
---|---|---|
水稻 Oryza sativa | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
小麦 Triticum aestivum | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
玉米 Zea mays | 种质资源鉴定与亲缘关系研究 | [ |
分子标记辅助育种 | [ | |
遗传图谱构建与基因定位 | [ | |
种子纯度鉴定 | [ | |
大白菜 Brassica rapa | 种质资源鉴定与亲缘关系研究 | [ |
遗传图谱构建与基因定位 | [ | |
西兰花 Brassica oleracea | 种质资源鉴定与亲缘关系研究 | [ |
葡萄 Vitis vinifera | 种质资源鉴定与亲缘关系研究 | [ |
小扁豆 Lens culinaris | 种质资源鉴定与亲缘关系研究 | [ |
咖啡 Coffea arabica | 种质资源鉴定与亲缘关系研究 | [ |
花生 Arachis hypogaea | 种质资源鉴定与亲缘关系研究 | [ |
遗传图谱构建与基因定位 | [ | |
豇豆 Vigna unguiculata | 分子标记辅助育种 | [ |
番茄 Lycopersicon esculentum | 分子标记辅助育种 | [ |
西瓜 Citrullus lanatus | 分子标记辅助育种 | [ |
高粱 Sorghum bicolor | 分子标记辅助育种 | [ |
遗传图谱构建与基因定位 | [ | |
桃 Amygdalus persica | 分子标记辅助育种 | [ |
马铃薯 Solanum tuberosum | 分子标记辅助育种 | [ |
苹果 Malus pumila | 分子标记辅助育种 | [ |
遗传图谱构建与基因定位 | [ | |
辣椒 Capsicum annuum | 分子标记辅助育种 | [ |
向日葵 Helianthus annuus | 分子标记辅助育种 | [ |
大豆 Glycine max | 遗传图谱构建与基因定位 | [ |
洋葱 Allium cepa | 遗传图谱构建与基因定位 | [ |
瓠瓜 Lagenaria siceraria | 种子纯度鉴定 | [ |
棉花 Gossypium hirsutum | 种子纯度鉴定 | [ |
大麦 Hordeum vulgare | 种子纯度鉴定 | [ |
萝卜 Raphanus sativus | 种子纯度鉴定 | [ |
[52] |
Cheon KS, Baek J, Cho YI, et al. Single nucleotide polymorphism(SNP)discovery and kompetitive allele-specific PCR(KASP)marker development with Korean Japonica rice varieties[J]. Plant Breed Biotech, 2018, 6(4):391-403.
doi: 10.9787/PBB.2018.6.4.391 URL |
[53] | Boлкoba HE, Coкoлob BM. KASPTM genotyping technology and its use in genetic-breeding programs(a study of maize)[J]. Plant Var Stud Prot, 2017, 13(2):131-140. |
[54] | Ongom PO, Fatokun C, Togola A, et al. Molecular fingerprinting and hybridity authentication in cowpea using single nucleotide polymorphism based kompetitive allele-specific PCR assay[J]. Front Plant Sci, 2021, 12:734117. |
[55] | 王鹏, 田哲娟, 等. 番茄5个抗病基因KASP分型技术体系的建立与应用[J]. 园艺学报, 2021, 48(11):2211-2226. |
Wang P, Tian ZJ, et al. Establishment and application of a tomato KASP genotyping system based on five disease resistance genes[J]. Acta Hortic Sin, 2021, 48(11):2211-2226. | |
[56] | 张敬敬, 张海英, 等. 河北省130份西瓜品种与种质资源抗病基因KASP检测分析[J]. 华北农学报, 2019(2):110-116. |
Zhang JJ, Zhang HY, et al. KASP assays of disease resistance genes from 130 watermelon varieties and germplasms in Hebei Province[J]. Acta Agric Boreali Sin, 2019(2):110-116. | |
[57] |
Oliver AL, Pedersen JF, Grant RJ, et al. Comparative effects of the Sorghum bmr-6 and bmr-12 genes:I. forage Sorghum yield and quality[J]. Crop Sci, 2005, 45(6):2234-2239.
doi: 10.2135/cropsci2004.0644 URL |
[58] |
Burow G, Chopra R, Sattler S, et al. Deployment of SNP(CAPS and KASP)markers for allelic discrimination and easy access to functional variants for brown midrib genes bmr6 and bmr12 in Sorghum bicolor[J]. Mol Breed, 2019, 39(8):1-10.
doi: 10.1007/s11032-018-0907-x URL |
[59] | 孟君仁, 曾文芳, 等. 桃若干重要性状的KASP分子标记开发与应用[J]. 中国农业科学, 2021, 54(15):3295-3307. |
Meng JR, Zeng WF, et al. Development and application of KASP molecular markers of some important traits for peach[J]. Sci Agric Sin, 2021, 54(15):3295-3307. | |
[60] |
Kaiser NR, Jansky S, Coombs JJ, et al. Assessing the contribution of sli to self-compatibility in North American diploid potato germplasm using KASPTM markers[J]. Am J Potato Res, 2021, 98(2):104-113.
doi: 10.1007/s12230-021-09821-8 URL |
[61] | Winfield M, Burridge A, Ordidge M, et al. Development of a minimal KASP marker panel for distinguishing genotypes in apple collections[J]. PLoS One, 2020, 15(11):e0242940. |
[62] |
Holdsworth WL, Mazourek M. Development of user-friendly markers for the pvr1 and Bs3 disease resistance genes in pepper[J]. Mol Breed, 2015, 35(1):1-5.
doi: 10.1007/s11032-015-0202-z URL |
[63] | Gascuel Q, Bordat A, Sallet E, et al. Effector polymorphisms of the sunflower downy mildew pathogen Plasmopara halstedii and their use to identify pathotypes from field isolates[J]. PLoS One, 2016, 11(2):e0148513. |
[64] |
Toojinda T, Siangliw M, Tragoonrung S, et al. Molecular genetics of submergence tolerance in rice:QTL analysis of key traits[J]. Ann Bot, 2003, 91(2):243-253.
doi: 10.1093/aob/mcf072 URL |
[65] |
Liu HJ, Niu YC, et al. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize[J]. BMC Genomics, 2015, 16:1078.
doi: 10.1186/s12864-015-2242-5 URL |
[66] | An YL, Chen LB, Tao LL, et al. QTL mapping for leaf area of tea plants(Camellia sinensis)based on a high-quality genetic map constructed by whole genome resequencing[J]. Front Plant Sci, 2021, 12:705285. |
[67] | Cheon KS, Jeong YM, et al. Development of 454 new kompetitive allele-specific PCR(KASP)markers for temperate Japonica rice varieties[J]. Plants(Basel), 2020, 9(11):1531. |
[68] | Ghosal S, Casal C Jr, Quilloy FA, et al. Deciphering genetics underlying stable anaerobic germination in rice:phenotyping, QTL identification, and interaction analysis[J]. Rice(N Y), 2019, 12(1):50. |
[1] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4):405-417. |
Lin M. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Curr Biotechnol, 2021, 11(4):405-417. | |
[2] |
Delannay X, McLaren G, Ribaut JM. Fostering molecular breeding in developing countries[J]. Mol Breed, 2012, 29(4):857-873.
doi: 10.1007/s11032-011-9611-9 URL |
[3] |
Leng PF, Lübberstedt T, Xu ML. Genomics-assisted breeding - A revolutionary strategy for crop improvement[J]. J Integr Agric, 2017, 16(12):2674-2685.
doi: 10.1016/S2095-3119(17)61813-6 URL |
[4] |
Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences[J]. Plant Cell Rep, 2008, 27(4):617-631.
doi: 10.1007/s00299-008-0507-z pmid: 18246355 |
[5] | Hu W, Zhou TH, et al. Development of whole-genome agarose-resolvable LInDel markers in rice[J]. Rice, 2020(1):1. |
[6] |
Rasheed A, Hao YF, Xia XC, et al. Crop breeding chips and genotyping platforms:progress, challenges, and perspectives[J]. Mol Plant, 2017, 10(8):1047-1064.
doi: S1674-2052(17)30174-0 pmid: 28669791 |
[7] |
Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR(KASP):overview of the technology and its application in crop improvement[J]. Mol Breed, 2014, 33(1):1-14.
doi: 10.1007/s11032-013-9917-x URL |
[8] |
Seo J, Lee G, Jin Z, et al. Development and application of indica-Ja-ponica SNP assays using the Fluidigm platform for rice genetic analysis and molecular breeding[J]. Mol Breed, 2020, 40(4):1-16.
doi: 10.1007/s11032-019-1080-6 URL |
[9] | Majeed U, Darwish E, Rehman SU, et al. Kompetitive allele specific PCR(KASP):a singleplex genotyping platform and its application[J]. J Agric Sci, 2018, 11(1):11. |
[69] |
Vinarao R, Proud C, et al. Stable and novel quantitative trait loci(QTL)confer narrow root cone angle in an aerobic rice(Oryza sativa L. )production system[J]. Rice, 2021, 14(1):28.
doi: 10.1186/s12284-021-00471-2 pmid: 33677700 |
[70] |
Vinarao R, Proud C, Snell P, et al. QTL validation and development of SNP-based high throughput molecular markers targeting a genomic region conferring narrow root cone angle in aerobic rice production systems[J]. Plants, 2021, 10(10):2099.
doi: 10.3390/plants10102099 URL |
[71] | Lei L, Zheng HL, Bi YL, et al. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice(Oryza sativa L. )using QTL-seq and RNA-seq[J]. Rice(N Y), 2020, 13(1):55. |
[72] | 蒋钰婕. 利用KASP标记定位小麦中国春无芒位点Awn-4A.1[D]. 杨凌:西北农林科技大学, 2020. |
Jiang YJ. Using KASP marker to mapping the awnless locus awn-4A. 1 in wheat variety Chinese spring[D]. Yangling:Northwest A & F University, 2020. | |
[73] | Zhan HX, Wang YL, Zhang D, et al. RNA-seq bulked segregant analysis combined with KASP genotyping rapidly identified PmCH7087 as responsible for powdery mildew resistance in wheat[J]. Plant Genome, 2021, 14(3):e20120. |
[74] | Xiong HC, Li YT, Guo HJ, et al. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat[J]. Front Plant Sci, 2021, 12:628478. |
[75] |
Wu JH, Wang QL, Kang ZS, et al. Development and validation of KASP-SNP markers for QTL underlying resistance to stripe rust in common wheat cultivar P10057[J]. Plant Dis, 2017, 101(12):2079-2087.
doi: 10.1094/PDIS-04-17-0468-RE URL |
[76] |
Wu JH, Liu SJ, Wang QL, et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes[J]. Theor Appl Genet, 2018, 131(1):43-58.
doi: 10.1007/s00122-017-2984-3 URL |
[77] |
Nair SK, Babu R, Magorokosho C, et al. Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines[J]. Theor Appl Genet, 2015, 128(9):1839-1854.
doi: 10.1007/s00122-015-2551-8 URL |
[10] |
Broccanello C, Chiodi C, Funk A, et al. Comparison of three PCR-based assays for SNP genotyping in plants[J]. Plant Methods, 2018, 14:28.
doi: 10.1186/s13007-018-0295-6 pmid: 29610576 |
[11] |
Hiremath PJ, Kumar A, et al. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes[J]. Plant Biotechnol J, 2012, 10(6):716-732.
doi: 10.1111/j.1467-7652.2012.00710.x pmid: 22703242 |
[12] |
Chang CC, Silva BBI, et al. Development and validation of KASP assays for the genotyping of racing performance-associated single nucleotide polymorphisms in pigeons[J]. Genes, 2021, 12(9):1383.
doi: 10.3390/genes12091383 URL |
[13] |
Landoulsi Z, Benromdhan S, Ben Djebara M, et al. Using KASP technique to screen LRRK2 G2019S mutation in a large Tunisian cohort[J]. BMC Med Genet, 2017, 18(1):70.
doi: 10.1186/s12881-017-0432-5 pmid: 28683740 |
[14] | Rosas JE, Bonnecarrère V, Pérez de Vida F. One-step, codominant detection of imidazolinone resistance mutations in weedy rice(Or-yza sativa L.)[J]. Electron J Biotechnol, 2014(2):95-101. |
[15] |
Patterson EL, Fleming MB, Kessler KC, et al. A KASP genotyping method to identify northern watermilfoil, Eurasian watermilfoil, and their interspecific hybrids[J]. Front Plant Sci, 2017, 8:752.
doi: 10.3389/fpls.2017.00752 pmid: 28533795 |
[16] |
You FM, Jia GF, Xiao J, et al. Genetic variability of 27 traits in a core collection of flax(Linum usitatissimum L. )[J]. Front Plant Sci, 2017, 8:1636.
doi: 10.3389/fpls.2017.01636 URL |
[17] |
Liu FM, Hong Z, Xu DP, et al. Genetic diversity of the endangered Dalbergia odorifera revealed by SSR markers[J]. Forests, 2019, 10(3):225.
doi: 10.3390/f10030225 URL |
[18] | Shikari AB, Najeeb S, et al. KASPTM based markers reveal a population sub-structure in temperate rice (Oryza sativa L.)germplasm and local landraces grown in the Kashmir valley, north-western Himalayas[J]. Genet Resour Crop Evol, 2021(3):821-834. |
[19] | Yang GL, Chen SP, Chen LK, et al. Development of a core SNP arrays based on the KASP method for molecular breeding of rice[J]. Rice(N Y), 2019, 12(1):21. |
[78] |
Wangai AW, Redinbaugh MG, Kinyua ZM, et al. First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya[J]. Plant Dis, 2012, 96(10):1582.
doi: 10.1094/PDIS-06-12-0576-PDN pmid: 30727337 |
[79] |
Awata LAO, Beyene Y, Gowda M, et al. Genetic analysis of QTL for resistance to maize lethal necrosis in multiple mapping populations[J]. Genes, 2019, 11(1):32.
doi: 10.3390/genes11010032 URL |
[80] |
Wang XQ, Shi Z, Zhang RY, et al. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize[J]. BMC Plant Biol, 2020, 20(1):515.
doi: 10.1186/s12870-020-02728-2 URL |
[81] |
Kante M, Rattunde HFW, Nébié B, et al. QTL mapping and validation of fertility restoration in West African Sorghum A1 cytoplasm and identification of a potential causative mutation for Rf2[J]. Theor Appl Genet, 2018, 131(11):2397-2412.
doi: 10.1007/s00122-018-3161-z URL |
[82] |
Cheng P, Gedling CR, Patil G, et al. Genetic mapping and haplotype analysis of a locus for quantitative resistance to Fusarium graminearum in soybean accession PI 567516C[J]. Theor Appl Genet, 2017, 130(5):999-1010.
doi: 10.1007/s00122-017-2866-8 pmid: 28275816 |
[83] |
Wang HB, Zhao S, Mao K, et al. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress[J]. BMC Plant Biol, 2018, 18(1):136.
doi: 10.1186/s12870-018-1308-3 URL |
[84] |
Scholten OE, van Kaauwen MPW, Shahin A, et al. SNP-markers in Allium species to facilitate introgression breeding in onion[J]. BMC Plant Biol, 2016, 16(1):187.
doi: 10.1186/s12870-016-0879-0 pmid: 27576474 |
[85] | 杨双娟, 张晓伟, 魏小春, 等. 大白菜抗根肿病基因BraA. Pb. 8. 4的定位及KASP标记开发[J]. 园艺学报, 2021, 48(7):1317-1328. |
Yang SJ, Zhang XW, Wei XC, et al. Mapping and KASP markers development for clubroot resistance gene BraA. Pb. 8. 4 in Chinese cabbage[J]. Acta Hortic Sin, 2021, 48(7):1317-1328. | |
[86] |
Leal-Bertioli SCM, Cavalcante U, et al. Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker-assisted selection[J]. G3 Genes|Genomes|Genetics, 2015, 5(7):1403-1413.
doi: 10.1534/g3.115.018796 URL |
[20] | 吴娴, 徐海峰, 张志斌, 等. 基于KASP标记的贵州禾群体遗传多样性与结构分析[J]. 分子植物育种, 2021, 19(4):1345-1353. |
Wu X, Xu HF, Zhang ZB, et al. Genetic diversity and population structure study of Guizhou He based on KASP marker[J]. Mol Plant Breed, 2021, 19(4):1345-1353. | |
[21] | 谢静敏, 侯万伟, 张小娟. 基于KASP标记的青海省小麦品种遗传多样性分析[J]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210618.1553.006.html. |
Xie JM, Hou WW, Zhang XJ. Analysis on genetic diversity of wheat varieties in Qinghai province with KASP markers[J]. Mol Plant Breed, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210618.1553.006.html. | |
[22] | Roncallo PF, Beaufort V, Larsen AO, et al. Genetic diversity and linkage disequilibrium using SNP(KASP)and AFLP markers in a worldwide durum wheat(Triticum turgidum L. var durum)collection[J]. PLoS One, 2019, 14(6):e0218562. |
[23] |
Zhang WJ, Zhao JJ, He JS, et al. Functional gene assessment of bread wheat:breeding implications in Ningxia Province[J]. BMC Plant Biol, 2021, 21(1):103.
doi: 10.1186/s12870-021-02870-5 URL |
[24] |
陆海燕, 周玲, 林峰, 等. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6):872-878.
doi: 10.3724/SP.J.1006.2019.83067 |
Lu HY, Zhou L, Lin F, et al. Development of efficient KASP molecular markers based on high throughput sequencing in maize[J]. Acta Agron Sin, 2019, 45(6):872-878. | |
[25] | Yang SJ, Yu WT, Wei XC, et al. An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. PLoS One, 2020, 15(10):e0240042. |
[26] | Shen YS, Wang JS, Shaw RK, et al. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli(Brassica oleracea L. var. italica)in China[J]. Front Plant Sci, 2021, 12:655254. |
[27] | 王富强. 葡萄KASP标记的开发及在种质资源鉴定中的应用[D]. 北京:中国农业科学院, 2021. |
Wang FQ. Development of KASP marker and its application in identification of germplasm resources in grape[D]. Beijing:The Chinese Academy of Agricultural Sciences, 2021. | |
[28] |
Wang D, Yang T, Liu R, et al. RNA-Seq analysis and development of SSR and KASP markers in lentil(Lens culinaris Medikus subsp. culinaris)[J]. Crop J, 2020, 8(6):953-965.
doi: 10.1016/j.cj.2020.04.007 URL |
[29] |
Akpertey A, Padi FK, Meinhardt L, et al. Effectiveness of single nucleotide polymorphism markers in genotyping germplasm collections of coffea canephora using KASP assay[J]. Front Plant Sci, 2021, 11:612593.
doi: 10.3389/fpls.2020.612593 URL |
[30] | Khera P, Upadhyaya HD, Pandey MK, et al. Single nucleotide polymorphism-based genetic diversity in the reference set of peanut(Arachis spp. )by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays[J]. Plant Genome, 2013, 6(3):1-11. |
[31] | 袁建霞, 董瑜, 张博, 等. 从文献计量角度分析作物分子标记辅助育种国际发展态势[J]. 科学观察, 2012, 7(2):24-32. |
Yuan JX, Dong Y, Zhang B, et al. A bibliometrical analysis of international development of molecular marker assisted breeding of crop[J]. Sci Focus, 2012, 7(2):24-32. | |
[32] |
Collard BCY, MacKill DJ. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1491):557-572.
doi: 10.1098/rstb.2007.2170 URL |
[33] | Shao Y, Peng Y, Mao BG, et al. Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China[J]. PLoS One, 2020, 15(5):e0232279. |
[34] | 牛付安, 周继华, 曹黎明, 等. 水稻低直链淀粉含量基因Wxmq的KASP标记开发与利用[J]. 分子植物育种, 2019, 17(24):8125-8131. |
Niu FA, Zhou JH, Cao LM, et al. Development and utilization of KASP marker for low amylose content gene, wxmq, in rice(Oryza sativa L.)[J]. Mol Plant Breed, 2019, 17(24):8125-8131. | |
[35] | Addison CK, Angira B, Kongchum M, et al. Characterization of haplotype diversity in the BADH2 aroma gene and development of a KASP SNP assay for predicting aroma in US rice[J]. Rice(N Y), 2020, 13(1):47. |
[36] |
Li WB, Zeng XH, Li SL, et al. Development and application of two novel functional molecular markers of BADH2 in rice[J]. Electron J Biotechnol, 2020, 46:1-7.
doi: 10.1016/j.ejbt.2020.04.004 URL |
[37] | 李瑶, 程灿, 周继华, 等. 水稻耐盐性基因SKC1的KASP标记的开发与利用[J]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210723.1339.006.html. |
Li Y, Cheng C, Zhou JH, et al. Development and utilization of KASP marker for salt tolerance gene SKC1 in rice[J]. Molecular Plant Breeding, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210723.1339.006.html. | |
[38] | 韦宇, 李孝琼, 何新柳, 等. 基于KASP技术的稻瘟病抗性基因Pi9分子标记的开发与评价[J]. 西南农业学报, 2019, 32(6):1216-1222. |
Wei Y, Li XQ, He XL, et al. Development and evaluation of rice blast resistance gene(Pi9)SNP molecular markers based on KASP technology[J]. Southwest China J Agric Sci, 2019, 32(6):1216-1222. | |
[39] | 杨义强, 朱林峰, 李晓芳, 等. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用[J]. 植物遗传资源学报, 2021, 22(5):1314-1321. |
Yang YQ, Zhu LF, Li XF, et al. Development and application of KASP marker specific for rice blast resistance Pi2 gene[J]. J Plant Genet Resour, 2021, 22(5):1314-1321. | |
[40] |
Liu Y, Wang FM, Zhang AN, et al. Development and validation of functional markers(Tetra-primer ARMS and KASP)for the bacterial blight resistance gene xa5 in rice[J]. Australas Plant Pathol, 2021, 50(3):323-327.
doi: 10.1007/s13313-021-00776-2 URL |
[41] | Kang JW, Shin D, et al. Accelerated development of rice stripe virus-resistant, near-isogenic rice lines through marker-assisted backcrossing[J]. PLoS One, 2019(12):e0225974. |
[42] |
Rasheed A, Wen WE, Gao FM, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theor Appl Genet, 2016, 129(10):1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516 |
[43] |
Qureshi N, Bariana HS, Zhang P, et al. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers[J]. Plant Dis, 2018, 102(2):413-420.
doi: 10.1094/PDIS-08-17-1144-RE pmid: 30673523 |
[44] |
Fang TL, Lei L, Li GQ, et al. Development and deployment of KASP markers for multiple alleles of Lr34 in wheat[J]. Theor Appl Genet, 2020, 133(7):2183-2195.
doi: 10.1007/s00122-020-03589-x URL |
[45] | Ur Rehman S, Ali Sher M, Saddique MAB, et al. Development and exploitation of KASP assays for genes underpinning drought tolerance among wheat cultivars from Pakistan[J]. Front Genet, 2021, 12:684702. |
[46] | 王志伟, 乔祥梅, 等. 云南小麦品种(系)抗逆性相关基因的KASP标记检测[J]. 西南农业学报, 2020(8):1601-1607. |
Wang ZW, Qiao XM, et al. Identification of genes associated with stress resistance in Yunnan wheat cultivars(lines)by KASP assays[J]. Southwest China J Agric Sci, 2020(8):1601-1607. | |
[47] |
Su ZQ, Jin SJ, et al. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat[J]. Theor Appl Genet, 2018, 131(11):2371-2380.
doi: 10.1007/s00122-018-3159-6 URL |
[48] |
Khalid M, Afzal F, Gul A, et al. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions[J]. Front Plant Sci, 2019, 10:717.
doi: 10.3389/fpls.2019.00717 pmid: 31214230 |
[49] | Anuarbek S, Abugalieva S, Turuspekov Y. Validation of bread wheat KASP markers in durum wheat lines in Kazakhstan[J]. Proc Latv Acad Sci Sect B Nat Exact Appl Sci, 2019, 73(5):462-465. |
[50] |
Jagtap AB, Vikal Y, Johal GS. Genome-wide development and validation of cost-effective KASP marker assays for genetic dissection of heat stress tolerance in maize[J]. Int J Mol Sci, 2020, 21(19):7386.
doi: 10.3390/ijms21197386 URL |
[51] |
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, et al. Wheat genetic resources in the post-genomics era:promise and challenges[J]. Ann Bot, 2018, 121(4):603-616.
doi: 10.1093/aob/mcx148 URL |
[87] |
Zhang HY, Wang H, Guo SG, et al. Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai[J]. Euphytica, 2012, 186(2):329-342.
doi: 10.1007/s10681-011-0574-z URL |
[88] |
Jung JK, Park SW, Liu WY, et al. Discovery of single nucleotide polymorphism in Capsicum and SNP markers for cultivar identification[J]. Euphytica, 2010, 175(1):91-107.
doi: 10.1007/s10681-010-0191-2 URL |
[89] | 兰青阔, 张桂华, 王永, 等. 基于SNP标记的黄瓜杂交种纯度鉴定方法[J]. 中国蔬菜, 2012(6):58-63. |
Lan QK, Zhang GH, Wang Y, et al. SNP-based molecular assay for cucumber hybrid seed purity identification by pyrosequencing[J]. China Veg, 2012(6):58-63. | |
[90] | 姚丹青, 朱文莹, 张微微, 等. 应用SNP标记高效鉴定黄瓜杂交种纯度[J]. 西北农业学报, 2016, 25(4):595-604. |
Yao DQ, Zhu WY, Zhang WW, et al. Highly efficient identification of seed purity of cucumber hybrid by SNP marker[J]. Acta Agric Boreali Occidentalis Sin, 2016, 25(4):595-604. | |
[91] |
Ertiro BT, Ogugo V, et al. Comparison of Kompetitive Allele Specific PCR(KASP)and genotyping by sequencing(GBS)for quality control analysis in maize[J]. BMC Genomics, 2015, 16:908.
doi: 10.1186/s12864-015-2180-2 URL |
[92] | 尹祥佳, 李晶, 王雅琳, 等. 基于基于SNP分子标记的玉米杂交种基因型分析与纯度鉴定[J]. 现代农业研究, 2021, 27(6):102-104, 132. |
Yin XJ, Li J, Wang YL, et al. The genotype analysis and purity identification by SNP markers in maize(Zea may L. )hybrids[J]. Mod Agric Res, 2021, 27(6):102-104, 132. | |
[93] |
王蕊, 施龙建, 田红丽, 等. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4):770-779.
doi: 10.3724/SP.J.1006.2021.03031 |
Wang R, Shi LJ, Tian HL, et al. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids[J]. Acta Agron Sin, 2021, 47(4):770-779.
doi: 10.3724/SP.J.1006.2021.03031 URL |
|
[94] | 冯子珊, 吴晓花, 李艳伟, 等. 基于KASP标记快速鉴定瓠瓜杂种F1纯度的方法[J]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1530.017.html. |
Feng ZS, Wu XH, Li YW, et al. A KASP-based rapid procedure for bottle gourd hybrid F1 seed purity survey[J]. Molecular Plant Breeding, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210705.1530.017.html. | |
[95] | 匡猛, 王延琴, 等. 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术[J]. 棉花学报, 2016, 28(3):227-233. |
Kuang M, Wang YQ, et al. High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers[J]. Cotton Sci, 2016, 28(3):227-233. | |
[96] | 蒋培基, 王德良, 徐东东, 等. 基于竞争性等位基因特异性PCR技术的麦芽品种纯度定性和定量检测[J]. 食品科学, 2018, 39(24):322-326. |
Jiang PJ, Wang DL, Xu DD, et al. Kompetitive allele specific PCR(KASP)for the qualification and quantification of malt varieties[J]. Food Sci, 2018, 39(24):322-326. | |
[97] |
Kim J, Manivannan A, et al. Transcriptome sequencing assisted discovery and computational analysis of novel SNPs associated with flowering in Raphanus sativus in-bred lines for marker-assisted backcross breeding[J]. Hortic Res, 2019, 6:120.
doi: 10.1038/s41438-019-0200-0 URL |
[98] |
McCouch SR, Zhao KY, et al. Development of genome-wide SNP assays for rice[J]. Breed Sci, 2010, 60(5):524-535.
doi: 10.1270/jsbbs.60.524 URL |
[99] | Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications[J]. Int J Plant Genomics, 2012, 2012:831460. |
[100] | 崔阳, 王晓云. 竞争性等位基因特异性PCR分型技术在植物抗病遗传育种中的应用[J]. 分子植物育种, 2021, 19(1):164-172. |
Cui Y, Wang XY. Application of kompetitive allele-specific PCR genotyping technology in plant genetic breeding for disease resistance[J]. Mol Plant Breed, 2021, 19(1):164-172. | |
[101] |
Miah G, Rafii MY, Ismail MR, et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance[J]. Int J Mol Sci, 2013, 14(11):22499-22528.
doi: 10.3390/ijms141122499 URL |
[1] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[2] | 李倩, 江文波, 王玉祥, 张博, 庞永珍. 苜蓿抗旱性分子研究进展[J]. 生物技术通报, 2021, 37(8): 243-252. |
[3] | 叶明旺, 李灿辉, 龚明. 基因组编辑技术在马铃薯精准分子育种中的应用及研究展望[J]. 生物技术通报, 2020, 36(3): 9-17. |
[4] | 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展[J]. 生物技术通报, 2020, 36(12): 155-169. |
[5] | 李崇晖, 尹俊梅. 蓝色花形成的基因工程进展与育种策略[J]. 生物技术通报, 2019, 35(11): 160-168. |
[6] | 王琼, 刘伯斌, 孔倩倩, 陈介南. 能源植物麻疯树分子育种研究进展[J]. 生物技术通报, 2014, 0(3): 1-8. |
[7] | 井赵斌;俞靓;魏琳;程积民;. 国外牧草基因组学和转基因技术研究进展[J]. , 2011, 0(11): 12-25. |
[8] | 黄炳超;. 科研新成果简介[J]. , 2008, 0(04): 200-201. |
[9] | 张广平;邹学校;. 外源DNA导入在蔬菜分子育种中的研究进展[J]. , 2007, 0(02): 102-107. |
[10] | . 广东省水稻育种新技术重点实验室[J]. , 1999, 0(05): 41-42. |
[11] | 董合忠;王留明;陈秀兰;时光春. 外源DNA和Bt基因导入棉花分子育种研究进展[J]. , 1996, 0(06): 8-11. |
[12] | 孙国凤;. 用细胞内复制型载体高效地性状转化植物[J]. , 1993, 0(08): 12-12. |
[13] | 孙国凤;. 西洋草坪的性状转化成功,着手耐虫、耐病性育种[J]. , 1993, 0(08): 13-13. |
[14] | 李思经;. DNA指纹法可靠,但需标准化[J]. , 1991, 0(02): 11-12. |
[15] | 孙国凤;. 三菱油化学公司用基因电脉冲导入法加速氨基酸生产菌的分子育种[J]. , 1989, 0(01): 12-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||