生物技术通报 ›› 2018, Vol. 34 ›› Issue (2): 25-37.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0623
韩艺娟, 鲁国东
收稿日期:
2017-07-26
出版日期:
2018-02-26
发布日期:
2018-03-12
作者简介:
韩艺娟,博士,研究方向:植物生物化学与分子生物学;E-mail:1091617@fafu.edu.cn
基金资助:
HAN Yi-juan, LU Guo-dong
Received:
2017-07-26
Published:
2018-02-26
Online:
2018-03-12
摘要: 作为一种主要粮食作物,水稻的生产影响全球经济的稳步增长。各种生物、非生物胁迫威胁水稻的生长发育过程。稻瘟病菌Magnaporthe oryzae(syn. Pyricularia oryzae)为重要的农业病原微生物,其引起的稻瘟病是世界性水稻重要病害,给水稻生产造成严重产量损失。相对于传统的化学农药防治,培育抗稻瘟病水稻品种是比较环保、有效的病害防治策略,然而田间稻瘟病菌群体复杂多样,小种遗传变异速度很快,抗病水稻品种的种植年限和范围受限。因此,掌握水稻抗病机理和稻瘟病菌致病机制有助于制定更好的防治措施。水稻与稻瘟病菌的相互作用过程涉及了不同层次的植物免疫反应,根据近年来水稻和稻瘟病菌功能基因组学研究上的最新进展,侧重对水稻抗稻瘟病的分子机理和信号传导方面进行了综述,并展望了二者研究所面临的机遇和挑战,以期进一步推进水稻与稻瘟病菌互作的分子机理研究,并为水稻的抗病育种提供借鉴。
韩艺娟, 鲁国东. 水稻与稻瘟病菌相互作用研究进展[J]. 生物技术通报, 2018, 34(2): 25-37.
HAN Yi-juan, LU Guo-dong. Recent Understanding on the Interactions Between Rice and Magnaporthe oryzae[J]. Biotechnology Bulletin, 2018, 34(2): 25-37.
[1] Fisher MC, Henk DA, Briggs CJ, et al.Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393):186-194. [2] Wilson RA, Talbot NJ.Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009, 7(3):185-195. [3] Wang GL, Valent B.Advances in genetics, genomics and control of rice blast disease[M]. New York:Springer Science and Business Media, 2009. [4] Ebbole DJ.Magnaporthe as a model for understanding host-pathogen interactions[J]. Annu Rev Phytopathol, 2007, 45:437-456. [5] Valent B, Chumley FG.Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea[J]. Annu Rev Phytopathol, 1991, 29:443-467. [6] Talbot NJ.On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J]. Annual Review of Microbiology, 2003, 57:177-202. [7] Dean RA, Talbot NJ, Ebbole DJ, et al.The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036):980-986. [8] Chinchilla D, Bauer Z, Regenass M, et al.The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476. [9] Zipfel C, Kunze G, Chinchilla D, et al.Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4):749-760. [10] Nürnberger T, Brunner F, Kemmerling B, et al.Innate immunity in plants and animals:striking similarities and obvious differences[J]. Immunological Reviews, 2004, 198:249-266. [11] Ebel J, Cosio EG.Elicitors of plant defense responses[J]. International Review of Cytology, 1994, 148:1-36. [12] Ebel J.Oligoglucoside elicitor-mediated activation of plant defense[J]. BioEssays, 1998, 20(7):569-576. [13] Boller T.Chemoperception of microbial signals in Plant Cells[J]. Annual Review of Plant Biology, 1995, 46:189-214. [14] Schaffrath U, Scheinpflug H, Rersendr HJ.An elicitor from Pyricularia oryzae induces resistance responses in rice:isolation, characterization and phsiological properties[J]. Physiological and Mol Plant Pathol, 1995, 46:293-309. [15] Kanoh H, Hega M, Sekizawa Y.Transmemberane signaling operated at rice blade cells stimulated by blast fungus elicitors I:Operation of the phospholipase C system[J]. Pesticides Science, 1993, 18:299-308. [16] Koga J, Yamauchi T, Shimura M, et al.Cerebosides A and C sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants[J]. Journal of Biological Chemistry, 1998, 273(48):31985-31991. [17] Sekizawa Y, Hega M, Hirabayashi E, et al.Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substance[J]. Agricultural and Biological Chemistry, 1995, 51(3):763-770. [18] 毕咏梅, 欧阳光察. 稻瘟病菌诱导物对水稻苯丙烷类途径酶系和绿原酸的诱导作用[J]. 植物生理学通讯, 1990, (3):18-20. [19] 肖拴锁, 王钧. 水稻中超氧诱导与稻瘟菌抗性及苯丙氨酸解氨酶、几丁酶、β-1, 3-葡聚糖酶活性诱导的关系[J]. 中国水稻科学, 1997, 11(2):93-102. [20] 李云峰, 王振中, 贾显禄. 稻瘟菌细胞壁激发子活性物质的提取与性质[J]. 华中农业大学学报, 2004, 23(3):285-289. [21] Umemura K, Ogawa N, Yamauchi T, et al.Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants[J]. Plant and Cell Physiology, 2000, 41(6):676-683. [22] Suharsono U, Fujisawa Y, Kawasaki T, et al.The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2002, 99(20):13307-13312. [23] Lieberherr D, Thao NP, Nakashima A, et al.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[J]. Plant Physiology, 2005, 138(3):1644-1652. [24] Chen M, Zeng H, Qiu D, et al.Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice[J]. PLoS One, 2012, 7(5):e37654. [25] Chen M, Zhang C, Zi Q, et al.A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice[J]. Plant Cell Reports, 2014, 33(11):1865-1879. [26] Zhang H, Li D, Wang M, et al.The Nicotiana benthamiana mitogen- activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)- triggered plant responses[J]. Mole-cular Plant-Microbe Interactions, 2012, 25(12):1639-1653. [27] Mogga V, Delventhal R, Weidenbach D, et al.Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco[J]. Plant Cell Reports, 2016, 35(5):1169-1185. [28] Chen S, Songkumarn P, Venu RC, et al.Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice[J]. Molecular Plant-Microbe Interactions, 2013, 26(2):191-202. [29] Wang Y, Wu J, Kim SG, et al.Magnaporthe oryzae-secreted protein MSP1 induces dell death and elicits defense responses in rice[J]. Molecular Plant-Microbe Interactions, 2016, 29(4):299-312. [30] Yang Y, Zhang H, Li G, et al.Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis[J]. Plant Biotechnology Journal, 2009, 7(8):763-777. [31] Hong Y, Yang Y, Zhang H, et al.Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad- spectrum resistance against fungal and bacterial diseases[J]. Sci Rep, 2017, 7:41037. [32] Yamada A, Shibuya N, Kodama O, et al.Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides[J]. Bioscience Biotechnology, and Biochemistry, 1993, 57(3):405-409. [33] Kuchitsu K, Kikuyama M, Shibuya N.N-Acetylchitooligosacchari-des, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells[J]. Protoplasma, 1993, 174:79-81. [34] Kuchitsu K, Yazaki Y, Sakano K, et al.Transient cytoplasmic pH change and ion fluxes through the plasma membrane in suspension-cultured rice cells triggered by N-Acetylchitooligosaccharide elicitor[J]. Plant and Cell Physiology, 1997, 38(9):1012-1018. [35] Kikuyama M, Kuchitsu K, Shibuya N.Membrane depolarization induced by N-Acetylchitooligosaccharide elicitor in suspension-cultured rice cells[J]. Plant and Cell Physiology, 1997, 38(8):902-909. [36] Minami E, Kuchitsu K, He DY, et al.Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production[J]. Plant Cell Physiol, 1996, 37(4):563-567. [37] Tanabe S, Okada M, Jikumaru Y, et al.Induction of resistance against rice blast fungus in rice plants treated with a potent elicitor, N-Acetylchitiooligosaccharide[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(7):1599-1605. [38] Shibuya N, Kaku H, Kuchitsu K, et al.Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells[J]. FEBS Letters, 1993, 329(1-2):75-78. [39] Shibuya N, Ebisu N, Kamada Y, et al.Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface[J]. Plant and Cell Physiology, 1996, 37(6):894-898. [40] Ito Y, Kaku H, Shibuya N.Identification of a high-affinity binding protein for N-Acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling[J]. The Plant Journal, 1997, 12(2):347-356. [41] Shinya T, Osada T, Desaki Y, et al.Characterization of receptor proteins using affinity cross-linking with biotinylated ligands[J]. Plant and Cell Physiology, 2010, 51(2):262-270. [42] Kouzai Y, Nakajima K, Hayafune M, et al.CEBiP is the major chitin oligomer- binding protein in rice and plays a main role in the perception of chitin oligomers[J]. Plant Mol Biol, 2014, 84(4-5):519-528. [43] Kouzai Y, Kaku H, Shibuya N, et al.Expression of the chimeric receptor between the chitin elicitor receptor CEBiP and the receptor-like protein kinase Pi-d2 leads to enhanced responses to the chitin elicitor and disease resistance against Magnaporthe oryzae in rice[J]. Plant Mol Biol, 2013, 81(3):287-295. [44] Kishimoto K, Kouzai Y, Kaku H, et al.Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice[J]. The Plant Journal, 2010, 64(2):343-354. [45] Shimizu T, Nakano T, Takamizawa D, et al.Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214. [46] Miya A, Albert P, Shinya T, et al.CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(49):19613-19618. [47] Wan J, Zhang XC, Neece D, et al.A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J]. Plant Cell, 2008, 20(2):471-481. [48] Petutschnig EK, Jones AM, Serazetdinova L, et al.The lysin motif receptor-like kinase(LysM-RLK)CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation[J]. Journal of Biological Chemistry, 2010, 285(37):28902-28911. [49] Kaku H, Nishizawa Y, Ishii-Minami N, et al.Plant Cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proc Natl Acad Sci USA, 2006, 103(29):11086-11091. [50] Shimizu T, Nakano T, Takamizawa D, et al.Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214. [51] Kouzai Y, Mochizuki S, Nakajima K, et al.Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J]. Molecular Plant-Microbe Interactions, 2014, 27(9):975-982. [52] Ao Y, Li Z, Feng D, et al.OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity[J]. The Plant Journal, 2014, 80(6):1072-1084. [53] Miyata K, Kozaki T, Kouzai Y, et al.The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice[J]. Plant and Cell Physiology, 2014, 55(11):1864-1872. [54] Ono E, Wong HL, Kawasaki T, et al.Essential role of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2001, 98(2):759-64. [55] Suharsono U, Fujisawa Y, Kawasaki T, et al.The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proceedings of Academy of Sciences of the United States of America, 2002, 99(20):13307-13312. [56] Kawasaki T, Henmi K, Ono E, et al.The small GTP-binding protein Rac is a regulator of cell death in plants[J]. Proceedings of Academy of Sciences of the United States of America, 1999, 96(19):10922-10926. [57] Wong HL, Sakamoto T, Kawasaki T, et al.Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice[J]. Plant Physiology, 2004, 135(3):1447-1456. [58] Kawano Y, Akamatsu A, Hayashi K, et al.Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J]. Cell Host & Microbe, 2010, 7(5):362-375. [59] Yamaguchi K, Imai K, Akamatsu A, et al.SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice[J]. The Plant Journal, 2012, 70(3):389-397. [60] Akamatsu A, Wong HL, Fujiwara M, et al.An OsCEBiP/OsCERK1- OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476. [61] Lieberherr D, Thao NP, Nakashima A, et al.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice[J]. Plant Physiology, 2005, 138(3):1644-1652. [62] Kim SH, Oikawa T, Kyozuka J, et al.The bHLH Rac Immunity1(RAI1)Is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity[J]. Plant and Cell Physiology, 2012, 53(4):740-754. [63] Chen L, Hamada S, Fujiwara M, et al.The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J]. Cell Host & Microbe, 2010, 7(3):185-196. [64] Thao NP, Chen L, Nakashima A, et al.RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. Plant Cell, 2007, 19(12):4035-4045. [65] Akamatsu A, Uno K, Kato M, et al. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice[J]. Plant Signaling & Behavior, 2015, 10(7):e 1044702. [66] Pratt WB, Toft DO.Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery[J]. Exp Biol Med (Maywood), 2003, 228(2):111-133. [67] Nakashima A, Chen L, Thao NP, et al.RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. Plant Cell, 2008, 20(8):2265-2279. [68] Shirasu K, Lahaye T, Tan MW, et al.A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans[J]. Cell, 1999, 99(4):355-366. [69] Shen QH, Zhou F, Bieri S, et al.Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus[J]. Plant Cell, 2003, 15(3):732-744. [70] Tornero P, Merritt P, Sadanandom A, et al.RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed[J]. Plant Cell, 2002, 14(5):1005-1015. [71] Muskett PR, Kahn K, Austin MJ, et al.Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens[J]. Plant Cell, 2002, 14(5):979-992. [72] Austin MJ, Muskett P, Kahn K, et al.Regulatory role of SGT1 in early R gene-mediated plant defenses[J]. Science, 2002, 295(5562):2077-2080. [73] Azevedo C, Sadanandom A, Kitagawa K, et al.The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance[J]. Science, 2002, 295(5562):2073-2076. [74] Liu Y, Schiff M, Marathe R, et al.Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus[J]. The Plant Journal, 2002, 30(4):415-429. [75] Holt BF 3rd, Belkhadir Y, Dangl JL. Antagonistic control of disease resistance protein stability in the plant immune system[J]. Science, 2005, 309(5736):929-932. [76] Liu H, Dong S, Sun D, et al.CONSTANS-Like 9(OsCOL9)interacts with receptor for activated C-Kinase 1(OsRACK1)to regulate blast resistance through aalicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249. [77] Liu S, Hua L, Dong S, et al.OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production[J]. The Plant Journal, 2015, 84(4):672-681. [78] Kishi-Kaboshi M, Takahashi A, Hirochika H.MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis[J]. Plant Signaling & Behavior, 2010, 5(12):1653-1656. [79] Akamatsu A, Wong HL, Fujiwara M, et al.An OsCEBiP/OsCERK1- OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476. [80] Zeng LR, Qu S, Bordeos A, et al.Spotted leaf11, a negative regulator of Plant Cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. Plant Cell, 2004, 16(10):2795-2808. [81] Yin Z, Chen J, Zeng L, et al.Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8):869-876. [82] Kojo K, Yaeno T, Kusumi K, et al.Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]Plant and Cell Physiology, 2006, 47(8):1035-1044. [83] Liu J, Park CH, He F, et al.The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens, 2015, 11(2):e1004629. [84] Giraldo MC, Dagdas YF, Gupta YK, et al.Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nat Commun, 2013, 4:1996. [85] Valent B, Khang CH.Recent advances in rice blast effector research[J]. Curr Opin Plant Biol, 2010, 13:434-441. [86] Mosquera G, Giraldo MC, Khang CH, et al.Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease[J]. Plant Cell, 2009, 21:1273-1290. [87] Sweigard JA, Carroll AM, Kang S, et al.Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus[J]. Plant Cell, 1995, 7(8):1221-1233. [88] Khang CH, Berruyer R, Giraldo MC, et al.Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. Plant Cell, 2010, 22(4):1388-1403. [89] Read ND.Exocytosis and growth do not occur only at hyphal tips[J]. Mol Microbiol, 2011, 81(1):4-7. [90] Park CH, Chen S, Shirsekar G, et al.2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. Plant Cell, 2012, 24(11):4748-4762. [91] Fujisaki K, Abe Y, Ito A, et al.Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity[J]. The Plant Journal, 2015, 83(5):875-887. [92] Mentlak TA, Kombrink A, Shinya T, et al.Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. Plant Cell, 2012, 24(1):322-335. [93] Dangl JL, Jones JD.Plant pathogens and integrated defense responses to infection[J]. Nature, 2001, 411:826-833. [94] Jones JD, Dangl JL.The plant immune system[J]. Nature, 2006, 444:323-329. [95] Macros M.Pathogen derived elicitors:searching for receptors in plants[J]. Mol Plant Pathol, 2003, 4(1):73-79. [96] Leung H, Raghavan C, Zhou B, et al.Allele mining and enhanced genetic recombination for rice breeding[J]. Rice(N Y), 2015, 8:34. [97] Azizi P, Rafii MY, Abdullah SN, et al.Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2016, 36(1):165-174. [98] Chauhan RS, Farman ML, Zhang HB, et al.Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics, 2002, 267(5):603-612. [99] Yang Q, Lin F, Wang L, et al.Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11[J]. Theoretical and Applied Genetics, 2009, 118(6):1027-1034. [100] He X, Liu X, Wang L, et al.Identification of the novel recessive gene Pi55(t)conferring resistance to Magnaporthe oryzae[J]. Science China Life Sciences, 2012, 55(2):141-149. [101] Zhu X, Chen S, Yang J, et al.The identification of, a new member Pi50(t)of the rice blast resistance Pi2/Pi9 multigene family[J]. Theor Appl Genet, 2012, 24(7):1295-1304. [102] Böhnert HU, Fudal I, Dioh W, et al.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 2004, 16(9):2499-2513. [103] Ashikawa I, Wu J, Matsumoto T, et al.Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance[J]. Journal of General Plant Pathology, 2010, 76:37-42. [104] Wu J, Kou Y, Bao J, et al.Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015, 206:1463-1475. [105] Zhang S, Wang L, Wu W, et al.Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J]. Sci Rep, 2015, 5:11642. [106] Cesari S, Thilliez G, Ribot C, et al.The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding[J]. Plant Cell, 2013, 25:1463-1481. [107] Kanzaki H, Yoshida K, Saitoh H, et al.Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions[J]. Plant J, 2012, 72:894-907. [108] Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19:4004-4014. [109] Li J, Lu L, Jia Y, et al. Effectiveness and durability of the rice Pi-ta gene in Yunnan province of China[J]. Phytopathology, 2014, 9:PHYTO11130016. [110] Singh R, Dangol S, Chen Y, et al.Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting indisruption of oxidative burst and host innate immunity[J]. Mol Cells, 2016, 39(5):426-438. [111] Park CH, Shirsekar G, Bellizzi M, et al.The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice[J]. PLoS Pathogens, 2016, 12(3):e1005529. [112] Wang R, Ning Y, Shi X, et al.Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Curr Biol, 2016, 26(18):2399-2411. [113] Tang M, Ning Y, Shu X, et al.The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae[J]. Rice(N Y), 2017, 10(1):5. [114] Edwards GE, Andreo CS.NADP-malic enzyme from plants[J]. Phytochemistry, 1992, 31(6):1845-1857. [115] Parker D, Beckmann M, Zubair H, et al.Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea[J]. The Plant Journal, 2009, 59(5):723-737. [116] Bolton MD, van Esse HP, Vossen JH, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species[J]. Mol Microbiol, 2008, 69(1):119-136. [117] de Jonge R, van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010, 329(5994):953-955. [118] Takahara H, Hacquard S, Kombrink A, et al.Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity[J]. New Phytologist, 2016, 211(4):1323-1337. [119] Zhou Z, Pang Z, Li G, et al.Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae[J]. Mol Plant Pathol, 2016, 17(8):1211-1222. [120] Chen XL, Shi T, Yang J, et al.N-glycosylation of effector proteins by an α-1, 3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity[J]. Plant Cell, 2014, 26(3):1360-1376. [121] Saitoh H, Fujisawa S, Mitsuoka C, et al.Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens[J]. PLoS Pathogens, 2012, 8(5):e1002711. [122] Fujikawa T, Sakaguchi A, Nishizawa Y, et al.Surface α-1, 3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants[J]. PLoS Pathogens, 2012, 8(8):e1002882. [123] Chi MH, Park SY, Kim S, et al.A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host[J]. PLoS Pathogens, 2009, 5(4):e1000401. [124] Huang K, Czymmek KJ, Caplan JL, et al.HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus[J]. PLoS Pathogens, 2011, 7(4):e1001335. [125] Bellin D, Asai S, Delledonne M, et al.Nitric oxide as a mediator for defense responses[J]. Molecular Plant-Microbe Interactions, 2013, 26(3):271-277. [126] Marroquin-Guzman M, Hartline D, Wright JD, et al.The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease[J]. Nature Microbiology, 2017, 2:17054. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[6] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[7] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[8] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[9] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[10] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[11] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[12] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[13] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[14] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[15] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||