生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 166-174.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0489
姜南1(), 石杨1, 赵志慧1, 李斌1, 赵熠辉1, 杨俊彪1, 闫家铭1, 靳雨璠1, 陈稷2, 黄进1()
收稿日期:
2022-04-21
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
姜南,男,硕士研究生,研究方向:水稻重金属响应基因功能;E-mail: 基金资助:
JIANG Nan1(), SHI Yang1, ZHAO Zhi-hui1, LI Bin1, ZHAO Yi-hui1, YANG Jun-biao1, YAN Jia-ming1, JIN Yu-fan1, CHEN Ji2, HUANG Jin1()
Received:
2022-04-21
Published:
2023-01-26
Online:
2023-02-02
摘要:
OsPT1编码的水稻磷酸盐(Pi)转运蛋白在水稻生长发育、非生物胁迫应答等方面发挥重要的调控作用。前期研究表明OsPT1为镉(Cd)响应基因,但其在Cd胁迫下的功能及作用机制仍然未知。阐明OsPT1在Cd胁迫下的作用,并为低Cd水稻品种的选育奠定基础。通过生物信息学方法对该基因的序列特征、结构和功能进行分析和预测,利用实时荧光定量PCR(RT-qPCR)方法检测Cd胁迫下水稻不同组织、不同时间点OsPT1的相对表达量。此外,利用PCR的方法克隆OsPT1的编码序列,构建pGADT7-OsPT1重组质粒载体,并将其转入Δycf1 BY4741酵母菌株(Cd敏感酵母菌株)用以验证OsPT1对酵母Cd耐受性的影响。结果表明,OsPT1编码序列全长为1 584 bp,编码分子量为57.46 kD,由527个氨基酸构成的蛋白。在水稻基因组中该基因上游启动子区含有与光、厌氧、茉莉酸甲酯等环境和激素响应相关的调控元件。系统进化分析表明,水稻OsPT1与高粱SbPT1亲缘关系最近。基因的镉响应表达分析结果表明,与对照相比,经100 μmol/L Cd处理的水稻在1、6和12 h后,地上部分OsPT1的转录水平分别上调1.31、1.34和2.46倍;水稻根部OsPT1在处理1和6 h后分别上调1.28和1.14倍,但在Cd处理12 h后,其表达水平下调至处理前的0.62倍。转基因酵母Cd耐受性结果表明,与对照(0 μmol/L Cd)相比,经25 μmol/L Cd处理后,转OsPT1的酵母对Cd的耐受性有一定的下降。OsPT1可能在水稻应对Cd胁迫过程中发挥一定的作用。
姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174.
JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress[J]. Biotechnology Bulletin, 2023, 39(1): 166-174.
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
OsPT1-qF | CTACTGGCGGATGAAGATG |
OsPT1-qR | GACCTTGCTGAAGATGTCC |
Ubiquitin-qF | ATCACGCTGGAGGTGGAGT |
Ubiquitin-qR | AGGCCTTCTGGTTGTAGACG |
表1 RT-qPCR引物序列
Table 1 Quantitative real-time PCR primer sequence
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
OsPT1-qF | CTACTGGCGGATGAAGATG |
OsPT1-qR | GACCTTGCTGAAGATGTCC |
Ubiquitin-qF | ATCACGCTGGAGGTGGAGT |
Ubiquitin-qR | AGGCCTTCTGGTTGTAGACG |
图1 OsPT1的PCR扩增及pGADT7-OsPT1重组载体的酶切验证 A:OsPT1的PCR扩增;B:酶切后的重组载体
Fig. 1 PCR amplification of OsPT1 gene and endonuclease digestion of the recombinant vector pGADT7-OsPT1 A: The PCR amplification of OsPT1 gene. B: Recombinant vector after digestion
蛋白质Protein | 氨基酸数Number of amino acid/aa | 分子式 Formula | 分子量Molecular weight/kD | 等电点pI | 不稳定指数Instability index | 平均疏水性Hydropathy index | 正/负电残基数Acid-base amino acid | 脂溶指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
OsPT1 | 527 | C2656H4021N667O710S25 | 57.46 | 8.57 | 31.09 | 0.361 | 38/34 | 90.09 |
表2 OsPT1蛋白的理化性质
Table 2 Physicochemical properties of OsPT1 protein
蛋白质Protein | 氨基酸数Number of amino acid/aa | 分子式 Formula | 分子量Molecular weight/kD | 等电点pI | 不稳定指数Instability index | 平均疏水性Hydropathy index | 正/负电残基数Acid-base amino acid | 脂溶指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
OsPT1 | 527 | C2656H4021N667O710S25 | 57.46 | 8.57 | 31.09 | 0.361 | 38/34 | 90.09 |
氨基酸Amino acid | 数量Quantity | 比例Proportion/% | 氨基酸Amino acids | 数量Quantity | 比例Proportion/% |
---|---|---|---|---|---|
Ala(A) | 67 | 12.7 | Arg(R) | 20 | 3.8 |
Asn(N) | 11 | 2.1 | Asp(D) | 18 | 3.4 |
Cys(C) | 6 | 1.1 | Gln(Q) | 16 | 3.0 |
Glu(E) | 16 | 3.0 | Gly(G) | 52 | 9.9 |
His(H) | 12 | 2.3 | Ile(I) | 35 | 6.6 |
Leu(L) | 48 | 9.1 | Lys(K) | 18 | 3.4 |
Met(M) | 19 | 3.6 | Phe(F) | 40 | 7.6 |
Pro(P) | 22 | 4.2 | Ser(S) | 30 | 5.7 |
Thr(T) | 35 | 6.6 | Trp(W) | 11 | 2.1 |
Tyr(Y) | 22 | 4.2 | Val(V) | 29 | 5.5 |
表3 OsPT1蛋白的氨基酸组成
Table 3 Amino acid composition of OsPT1 protein
氨基酸Amino acid | 数量Quantity | 比例Proportion/% | 氨基酸Amino acids | 数量Quantity | 比例Proportion/% |
---|---|---|---|---|---|
Ala(A) | 67 | 12.7 | Arg(R) | 20 | 3.8 |
Asn(N) | 11 | 2.1 | Asp(D) | 18 | 3.4 |
Cys(C) | 6 | 1.1 | Gln(Q) | 16 | 3.0 |
Glu(E) | 16 | 3.0 | Gly(G) | 52 | 9.9 |
His(H) | 12 | 2.3 | Ile(I) | 35 | 6.6 |
Leu(L) | 48 | 9.1 | Lys(K) | 18 | 3.4 |
Met(M) | 19 | 3.6 | Phe(F) | 40 | 7.6 |
Pro(P) | 22 | 4.2 | Ser(S) | 30 | 5.7 |
Thr(T) | 35 | 6.6 | Trp(W) | 11 | 2.1 |
Tyr(Y) | 22 | 4.2 | Val(V) | 29 | 5.5 |
图2 OsPT1蛋白亲疏水性分析 得分大于0的区域代表OsPT1的疏水区,小于0的区域代表OsPT1的亲水区
Fig. 2 Hydrophobicity analysis of OsPT1 protein Regions with values above 0 are hydrophobic in character. Regions with values less than 0 are hydrophilic in character
图3 OsPT1蛋白质的二、三级结构预测 A:OsPT1的二级结构,蓝色表示α-螺旋,红色表示延伸链,绿色表示β-转角,紫色表示无规则卷曲,横坐标表示每个氨基酸残基在OsPT1上的位置;B:OsPT1的三级结构,紫色表示α-螺旋,蓝色表示无规则卷曲,红色表示丙氨酸
Fig. 3 Secondary and tertiary structure prediction of OsPT1 protein A: The secondary structure of OsPT1, where blue indicates α-helix, red indicates extended chain, green indicates β-sheet, purple indicates irregular curl, and the abscissa indicates the position of each residue in the amino acid sequence of OsPT1. B: The tertiary structure of OsPT1, where purple indicates α-helix, blue represents irregular curl, and red represents Ala
图4 OsPT1蛋白潜在的磷酸化位点分析 红线代表潜在的磷酸化丝氨酸残基;绿线代表潜在的磷酸化苏氨酸残基;蓝线代表潜在的磷酸化酪氨酸残基;粉红色水平线表示具有磷酸化潜力的阈值;横坐标表示每个氨基酸残基在OsPT1上的位置;纵坐标表示预测的磷酸化潜能得分
Fig. 4 potential phosphorylation sites analysis of OsPT1 protein Red line indicates potential phosphorylated serine residues; green line indicates potential phosphorylated threonine residues; blue line indicates potential phosphorylated tyrosine residues; pink horizontal line indicates threshold for modification potential; the abscissa indicates the position of each residue in the amino acid sequence of OsPT1, and the ordinate indicates predicted phosphorylation potential score
图5 PT1蛋白系统进化分析 TdPT1:二粒小麦,XP_037426503.1;TaPT1:小麦,AIZ11178.1;HvPT1:大麦,AAN37900.1;ZmPT1玉米,NP_001183901.1;OsPT1:水稻,XP_015631295.1;SbPT1:高粱,XP_002467158.1;VvPT1:葡萄,XP_002281264.1;AtPT1:拟南芥,NP_001319749.1;SlPT1:番茄,CAA76075.1;GmPT1:大豆,NP_001240239.1;PtPT1:毛白杨,XP_002300153.3
Fig. 5 Phylogenetic analysis of PT1 proteins TdPT1: Triticum dicoccoides, XP_037426503.1; TaPT1: Triticum aestivum, AIZ11178.1; HvPT1: Hordeum vulgare, AAN37900.1; ZmPT1: Zea mays, NP_001183901.1; OsPT1: Oryza sativa, XP_015631295.1; SbPT1: Sorghum bicolor, XP_002467158.1; VvPT1: Vitis vinifera, XP_002281264.1; AtPT1: Arabidopsis thaliana, NP_001319749.1; SlPT1: Solanum lycopersicum, CAA76075.1; GmPT1: Glycine max, NP_001240239.1; PtPT1: Populus trichocarpa, XP_002300153.3
图6 OsPT1的顺式作用元件分析 不同颜色的方块代表光响应元件(绿色和红色)、厌氧响应元件(黄色)、MeJA响应元件(粉色)、水杨酸响应元件(蓝色)和疾病、应激响应元件(灰色)
Fig. 6 Cis-acting elements analysis of OsPT1 gene Blocks of different colors indicate light responsiveness elements(green and red), anaerobic responsiveness elements(yellow), MeJA responsiveness elements(pink), Sal Icylic acid responsiveness elements(blue)and disease, stress responsiveness elements(grey), respectively
图7 OsPT1响应Cd胁迫表达分析 A:地上部分;B:根。*代表在P=0.01水平上差异显著
Fig. 7 Expression analysis of OsPT1 under Cd stress treatment A: Shoot. B: Root. * indicate significant difference from 0 h at P=0.01
[1] |
Han YX, Ni ZL, Li SL, et al. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil[J]. Environ Sci Pollut Res, 2018, 25(18): 17434-17443.
doi: 10.1007/s11356-018-1896-3 URL |
[2] |
Rascio N, Dalla Vecchia F, la Rocca N, et al. Metal accumulation and damage in rice(cv. Vialone nano)seedlings exposed to cadmium[J]. Environ Exp Bot, 2008, 62(3): 267-278.
doi: 10.1016/j.envexpbot.2007.09.002 URL |
[3] | 李陈贞, 孙亚莉, 刘红梅, 等. 镉胁迫下不同水稻品种幼苗生长及光合性能的差异[J]. 湖南农业大学学报: 自然科学版, 2021, 47(2): 147-152. |
Li CZ, Sun YL, Liu HM, et al. The difference of seedling growth and photosynthetic performance of different rice varieties under cadmium stress[J]. J Hunan Agric Univ Nat Sci, 2021, 47(2): 147-152. | |
[4] |
Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney[J]. Biometals, 2010, 23(5): 783-792.
doi: 10.1007/s10534-010-9328-y pmid: 20354761 |
[5] |
Nakagawa H, Tabata M, Morikawa Y, et al. High mortality and shortened life-span in patients with itai-itai disease and subjects with suspected disease[J]. Arch Environ Health, 1990, 45(5): 283-287.
doi: 10.1080/00039896.1990.10118747 URL |
[6] |
Liu CL, Ding SL, Zhang AP, et al. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding[J]. J Integr Plant Biol, 2020, 62(3): 349-359.
doi: 10.1111/jipb.12909 |
[7] |
Yang CH, Zhang Y, Huang CF. Reduction in cadmium accumulation in Japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. J Integr Agric, 2019, 18(3): 688-697.
doi: 10.1016/S2095-3119(18)61904-5 URL |
[8] |
Hu YA, Cheng HF, Tao S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environ Int, 2016, 92/93: 515-532.
doi: 10.1016/j.envint.2016.04.042 URL |
[9] | 夏凡, 代婷婷, 姚新转, 等. 水稻OPR基因的克隆及其在烟草中抗镉性分析[J]. 种子, 2020, 39(5): 53-58. |
Xia F, Dai TT, Yao XZ, et al. Cloning of Oryza sativa OPR gene and its cadmium resistance in tobacco[J]. Seed, 2020, 39(5): 53-58. | |
[10] | 安鹏虎, 张多民, 周子方, 等. 植物重金属转运蛋白P1B-ATPases研究进展[J]. 生物工程学报, 2021, 37(9): 3020-3030. |
An PH, Zhang DM, Zhou ZF, et al. Advances in plant heavy metal transporter P1B-ATPases[J]. Chin J Biotechnol, 2021, 37(9): 3020-3030. | |
[11] |
Jogawat A, Yadav B, Chhaya, et al. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants[J]. Physiol Plant, 2021, 173(1): 259-275.
doi: 10.1111/ppl.13370 pmid: 33586164 |
[12] | 郭兆来, 袁鑫奇, 汪斯琛, 等. 植物重金属耐性相关基因研究进展[J]. 环境生态学, 2020, 2(12): 41-47, 54. |
Guo ZL, Yuan XQ, Wang SC, et al. Research progress on heavy metal tolerance-related genes in plants[J]. Environ Ecol, 2020, 2(12): 41-47, 54. | |
[13] | 刘梅, 李祖然, 祖艳群. 植物吸收、转移镉相关的转运蛋白CAXs和HMAs的研究进展[J]. 中国农学通报, 2020, 36(30): 82-90. |
Liu M, Li ZR, Zu YQ. Transport protein CAXs and HMAs related to cadmium absorbing and transferring of plant: a review[J]. Chin Agric Sci Bull, 2020, 36(30): 82-90. | |
[14] | 王鹏云, 晁代印. 重金属污染的植物修复及相关分子机制[J]. 生物工程学报, 2020, 36(3): 426-435. |
Wang PY, Chao DY. Phytoremediation of heavy metal contamination and related molecular mechanisms in plants[J]. Chin J Biotechnol, 2020, 36(3): 426-435. | |
[15] | Pittman JK, Hirschi KD. CAX-ing a wide net: Cation/H(+)transporters in metal remediation and abiotic stress signalling[J]. Plant Biol(Stuttg), 2016, 18(5): 741-749. |
[16] |
Yang L, Wei Y, Li N, et al. Declined cadmium accumulation in Na+/H+ antiporter(NHX1)transgenic duckweed under cadmium stress[J]. Ecotoxicol Environ Saf, 2019, 182: 109397.
doi: 10.1016/j.ecoenv.2019.109397 URL |
[17] |
Liu F, Chang XJ, Ye Y, et al. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice[J]. Mol Plant, 2011, 4(6): 1105-1122.
doi: 10.1093/mp/ssr058 pmid: 21832284 |
[18] |
Sun SB, Gu M, Cao Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiol, 2012, 159(4): 1571-1581.
doi: 10.1104/pp.112.196345 pmid: 22649273 |
[19] |
Kamiya T, Islam R, Duan GL, et al. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Sci Plant Nutr, 2013, 59(4): 580-590.
doi: 10.1080/00380768.2013.804390 URL |
[20] | 黄新朋. 水稻磷转运蛋白基因OsPTl的功能研究[D]. 南京: 南京农业大学, 2010. |
Huang XP. Functional analysis of a phosphate transporter gene OsPtl in rice[D]. Nanjing: Nanjing Agricultural University, 2010. | |
[21] |
Ye Y, Li P, Xu TQ, et al. OsPT4 contributes to arsenate uptake and transport in rice[J]. Front Plant Sci, 2017, 8: 2197.
doi: 10.3389/fpls.2017.02197 pmid: 29312424 |
[22] |
Anandan A, Parameswaran C, Mahender A, et al. Trait variations and expression profiling of OsPHT1 gene family at the early growth-stages under phosphorus-limited conditions[J]. Sci Rep, 2021, 11(1): 13563.
doi: 10.1038/s41598-021-92580-7 pmid: 34193908 |
[23] | 张晓. 磷酸盐转运蛋白OsPT5/OsPT7与质子焦磷酸酶AVP1D影响植物磷素吸收转运和生长发育的机制研究[D]. 南京: 南京农业大学, 2014. |
Zhang X. Characterization of the effect of phosphate transporters OsPT5/OsPT7 and proton-pyrophosphatase AVP1D on plant phosphate uptake and development[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[24] | 贾宏昉. 水稻高亲和磷转运蛋白基因OsPht1;8的功能研究[D]. 南京: 南京农业大学, 2011. |
Jia HF. Functional analysis of a phosphate transporter gene OsPht1;8 in rice[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[25] | Cao MX, Liu HZ, Zhang C, et al. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance[J]. Plants(Basel), 2020, 9(10): 1384. |
[26] | Faraji S, Hasanzadeh S, Heidari P. Comparative in silico analysis of phosphate transporter gene family, PHT, in Camelina sativa gemome[J]. Gene Rep, 2021, 25: 101351. |
[27] |
Gietz RD, Schiestl RH, Willems AR, et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast, 1995, 11(4): 355-360.
doi: 10.1002/yea.320110408 pmid: 7785336 |
[28] |
许肖博, 安鹏虎, 郭天骄, 等. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35(5): 415-426.
doi: 10.16819/j.1001-7216.2021.201209 |
Xu XB, An PH, Guo TJ, et al. Research progresses on response mechanisms and control measures of cadmium stress in rice[J]. Chin J Rice Sci, 2021, 35(5): 415-426.
doi: 10.16819/j.1001-7216.2021.201209 |
|
[29] |
方波, 肖腾伟, 苏娜娜, 等. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3): 225-237.
doi: 10.16819/j.1001-7216.2021.0719 |
Fang B, Xiao TW, Su NN, et al. Research progress on cadmium uptake and its transport and accumulation among organs in rice[J]. Chin J Rice Sci, 2021, 35(3): 225-237.
doi: 10.16819/j.1001-7216.2021.0719 |
|
[30] | Li DD, Xu XM, Hu XQ, et al. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa[J]. Front Plant Sci, 2015, 6: 1149. |
[31] |
Ma QJ, Sun MH, Lu J, et al. Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple[J]. J Exp Bot, 2020, 71(12): 3437-3449.
doi: 10.1093/jxb/eraa121 URL |
[32] |
Navarro C, Mateo-Elizalde C, Mohan TC, et al. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis[J]. Mol Plant, 2021, 14(9): 1489-1507.
doi: 10.1016/j.molp.2021.05.020 URL |
[33] | 高佳, 刘雄伦, 刘玲, 等. 水稻磷酸盐转运蛋白Pht1家族研究进展[J]. 中国农学通报, 2009, 25(15): 31-34. |
Gao J, Liu XL, Liu L, et al. Advance of rice phosphate transporters Pht1[J]. Chin Agric Sci Bull, 2009, 25(15): 31-34. | |
[34] | 戴闽玥. 外源磷对红树植物抗镉胁迫的调控机制[D]. 厦门: 厦门大学, 2018. |
Dai MY. The regulatory mechanism of exogenous phosphorous in cadmium resistance of mangroves[D]. Xiamen: Xiamen University, 2018. | |
[35] |
Kerdsomboon K, Techo T, Limcharoensuk T, et al. Low phosphate mitigates cadmium-induced oxidative stress in Saccharomyces cerevisiae by enhancing endogenous antioxidant defense system[J]. Environ Microbiol, 2022, 24(2): 707-720.
doi: 10.1111/1462-2920.15875 URL |
[36] | 张文萍, 管啸, 钟诚, 等. 施磷增氧条件对水稻光合特性及镉吸收分配的影响[J/OL]. 农业环境科学学报, 2022. http://kns.cnki.net/kcms/detail/12.1347.s.20220321.2045.002.html. |
Zhang WP, Guan X, Zhong C, et al. Effects of phosphorus and oxygation on photosynthetic characteristics, cadmium absorption, and distribution in rice[J]. J Agro Environ Sci, 2022. ttp://kns.cnki.net/kcms/detail/12.1347.s.20220321.2045.002.html. | |
[37] | 谭文韬, 霍洋, 周航, 等. 水稻磷盈亏对镉吸收转运的影响[J]. 环境科学, 2022, 43(6): 3308-3314. |
Tan WT, Huo Y, Zhou H, et al. Effects of phosphorus sufficiency and deficiency on cadmium uptake and transportation by rice[J]. Environ Sci, 2022, 43(6): 3308-3314.
doi: 10.1021/es802832u URL |
|
[38] | 霍洋, 仇银燕, 周航, 等. 外源磷对镉胁迫下水稻生长及镉累积转运的影响[J]. 环境科学, 2020, 41(10): 4719-4725. |
Huo Y, Qiu YY, Zhou H, et al. Effects of exogenous phosphorus on rice growth and cadmium accumulation and transportation under cadmium stress[J]. Environ Sci, 2020, 41(10): 4719-4725. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[4] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[5] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[6] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[7] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[8] | 赵思佳, 王晓璐, 孙纪录, 田健, 张杰. 代谢工程改造毕赤酵母生产赤藓糖醇[J]. 生物技术通报, 2023, 39(8): 137-147. |
[9] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[10] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[11] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
[12] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[13] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[14] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[15] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||