生物技术通报 ›› 2018, Vol. 34 ›› Issue (7): 31-39.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0360
庞磊, 朱颖, 金中财, 夏曦华, 李瑞熙
收稿日期:
2018-06-20
出版日期:
2018-07-26
发布日期:
2018-08-01
作者简介:
庞磊,博士,高级研究学者,研究方向:植物小G蛋白介导的内膜运输;E-mail:pangl@sustc.edu.cn
基金资助:
PANG Lei, ZHU Ying, JIN Zhong-cai, XIA Xi-hua, LI Rui-xi
Received:
2018-06-20
Published:
2018-07-26
Online:
2018-08-01
摘要: 植物细胞内膜体系与别的真核生物体系相似,由一系列连续的内膜结构组成,包括核膜、内质网、高尔基体、反式高尔基体、液泡、转运囊泡和细胞膜。其中,反式高尔基体和液泡具有植物细胞特有的结构特征和对应功能。从几个方面综述植物细胞内膜运输对植物发育的调控作用,包括内膜运输与生长素极性运输和稳态平衡之间的关系,内膜运输对根毛极性生长的作用机理,以及液泡运输在花粉管极性生长和种子萌发过程中的重要作用。旨在对致力于植物细胞内膜运输与发育调控的研究人员提供参考。
庞磊, 朱颖, 金中财, 夏曦华, 李瑞熙. 植物细胞内膜运输对植物发育的调控机制[J]. 生物技术通报, 2018, 34(7): 31-39.
PANG Lei, ZHU Ying, JIN Zhong-cai, XIA Xi-hua, LI Rui-xi. Mechanism of Plant Development Regulation by Endomembrane Trafficking[J]. Biotechnology Bulletin, 2018, 34(7): 31-39.
[1] Morita MT, Shimada T.The plant endomembrane system-A complex network supporting plant development and physiology[J]. Plant and Cell Physiology, 2014, 55(4):667-671. [2] Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K.Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis[J]. Plant Cell, 2006, 18(3):715-730. [3] Viotti C, Bubeck J, Stierhof YD, et al.Endocytic and secretory traffic in Arabidopsis merge in the trans-golgi network/early endosome, an independent and highly dynamic organelle[J]. Plant Cell, 2010, 22(4):1344-1357. [4] Herman E, Schmidt M.Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole[J]. Plant Physiology, 2004, 136(3):3440-3446. [5] Reyes FC, Chung T, Holding D, et al.Delivery of prolamins to the protein storage vacuole in maize aleurone cells[J]. Plant Cell, 2011, 23(2):769-784. [6] Kulich I, Zarsky V.Autophagy-related direct membrane import from ER/Cytoplasm into the vacuole or apoplast:a hidden gateway also for secondary metabolites and phytohormones?[J]. International Journal of Molecular Sciences, 2014, 15(5):7462-7474. [7] Viotti C.ER and vacuoles:never been closer[J]. Front Plant Sci, 2014, 5:20. [8] Viotti C, Krüger F, Krebs M, et al.The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis[J]. Plant Cell, 2013, 25(9):3434-3449. [9] Zwiewka M, Feraru E, Möller B, et al.The AP-3 adaptor complex is required for vacuolar function in Arabidopsis[J]. Cell Research, 2011, 21(12):1711-1722. [10] Feraru E, Paciorek T, Feraru MI, et al.The AP-3 beta adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis[J]. Plant Cell, 2010, 22(8):2812-2824. [11] Cui Y, Shen J, Gao C, et al.Biogenesis of plant prevacuolar multivesicular bodies[J]. Molecular Plant, 2016, 9(6):774-786. [12] Wolfenstetter S, Wirsching P, Dotzauer D, et al.Routes to the tonoplast:the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts[J]. Plant Cell, 2012, 24(1):215-232. [13] Ebine K, Inoue T, Ito J, et al.Plant vacuolar trafficking occurs through distinctly regulated pathways[J]. Current Biology, 2014, 24(12):1375-1382. [14] Brillada C, Rojas-Pierce M.Vacuolar trafficking and biogenesis:a maturation in the field[J]. Current Opinion in Plant, Biology, 2017, 40:77-81. [15] Gälweiler L, Guan C, Müller A, et al.Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397):2226-2230. [16] Armengot L, Marques-Bueno MM, Jaillais Y.Regulation of polar auxin transport by protein and lipid kinases[J]. Journal of Experimental Botany, 2016, 67(14):4015-4037. [17] Mravec J, Skůpa P, Bailly A, et al.Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter[J]. Nature, 2009, 459(7250):1136-1140. [18] Friml J.Subcellular trafficking of PIN auxin efflux carriers in auxin transport[J]. Eur J Cell Biol, 2010, 89(2-3):231-235. [19] Friml J, Vieten A, Sauer M, et al.Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963):147-153. [20] Muday GK, Peer WA, Murphy AS.Vesicular cycling mechanisms that control auxin transport polarity[J]. Trends in Plant Science, 2003, 8(7):301-304. [21] Fu Y, Yang ZB.Rop GTPase:a master switch of cell polarity development in plants[J]. Trends in Plant Science, 2001, 6(12):545-547. [22] Bucci C, Parton RG, Mather IH, et al.The small Gtpase rab5 functions as a regulatory factor in the early endocytic pathway[J]. Cell, 1992, 70(5):715-728. [23] Dhonukshe P, Tanaka H, Goh T, et al.Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions[J]. Nature, 2008, 456(7224):962-U975. [24] Fan L, Hao H, Xue Y, et al.Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development[J]. Development, 2010, 140(18):3826-3837. [25] Kitakura S, Vanneste S, Robert S, et al.Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis[J]. Plant Cell, 2011, 23(5):1920-1931. [26] Wang C, Yan X, Chen Q, et al.Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis[J]. Plant Cell, 2013, 25(2):499-516. [27] Kleine-Vehn J, Wabnik K, Martinière A, et al.Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane[J]. Mol Syst Biol, 2011, 7:540. [28] Geldner N, Friml J, Stierhof YD, et al.Auxin transport inhibitors block PIN1 cycling and vesicle trafficking[J]. Nature, 2001, 413(6854):425-428. [29] Steinmann T, Geldner N, Grebe M, et al.Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF[J]. Science, 1999, 286(5438):316-318. [30] Kleine-Vehn J, Huang F, Naramoto S, et al.PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-Independent trafficking in Arabidopsis[J]. Plant Cell, 2009, 21(12):3839-3849. [31] Li R, Rodriguez-Furlan C, Wang J, et al.Different endomembrane trafficking pathways establish apical and basal polarities[J]. Plant Cell, 2017, 29(1):90-108. [32] Drdová EJ, Synek L, Pečenková T, et al.The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis[J]. Plant J, 2013, 73(5):709-719. [33] Tan XY, Feng YH, Liu YL, Bao YQ.Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root[J]. Plant Science, 2016, 250:97-104. [34] Ganguly A, Park M, Kesawat MS, Cho HT.Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins[J]. Plant Cell, 2014, 26(4):1570-1585. [35] Dal Bosco C, Dovzhenko A, Liu X, et al.The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis[J]. Plant J, 2012, 71(5):860-870. [36] Ding Z, Wang B, Moreno I, et al.ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J]. Nat Commun, 2012, 3:941. [37] Dal Bosco C, Dovzhenko A, Palme K.Intracellular auxin transport in pollen:PIN8, PIN5 and PILS5[J]. Plant Signaling & Behavior, 2012, 7(11):1504-1505. [38] Krecek P, Skupa P, Libus J, et al.The PIN-FORMED(PIN)protein family of auxin transporters[J]. Genome Biology, 2009, 10(12):249. [39] Simon S, Skůpa P, Viaene T, et al.PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis[J]. New Phytologist, 2016, 211(1):65-74. [40] Ditengou FA, Gomes D, Nziengui H, et al.Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting[J]. New Phytologist, 2018, 217(4):1610-1624. [41] Salazar-Henao JE, Velez-Bermudez IC, Schmidt W.The regulation and plasticity of root hair patterning and morphogenesis[J]. Development, 2016, 143(11):1848-1858. [42] D'Souza-Schorey C, Chavrier P. ARF proteins:roles in membrane traffic and beyond[J]. Nature Reviews Molecular Cell Biology, 2006, 7(5):347-358. [43] Vernoud V, Horton AC, Yang Z, Nielsen E.Analysis of the small GTPase gene superfamily of Arabidopsis[J]. Plant Physiology, 2003, 131(3):1191-1208. [44] Preuss ML, Schmitz AJ, Thole JM, et al.A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana[J]. J Cell Biol, 2006, 172(7):991-998. [45] Assaad FF, Huet Y, Mayer U, Jurgens G.The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE[J]. J Cell Biol, 2001, 152(3):531-543. [46] Dindas J, Scherzer S, Roelfsema MRG, et al.AUX1-mediated root hair auxin influx governs SCF(TIR1/AFB)-type Ca2+ signaling[J]. Nat Commun, 2018, 9(1):1174. [47] Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion[J]. Science, 2007, 316(5828):1205-1208. [48] Kang E, Zheng M, Zhang Y, et al.The microtubule-associated protein MAP18 Affects ROP2 GTPase activity during root hair growth[J]. Plant Physiology, 2017, 174(1):202-222. [49] Synek L, Schlager N, Eliás M, et al.AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development[J]. Plant J, 2006, 48(1):54-72. [50] Ovecka M, Berson T, Beck M, et al.Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(9):2999-3019. [51] Zhao X, Zhang X, Qu Y, et al.Mapping of membrane lipid order in root apex zones of Arabidopsis thaliana[J]. Front Plant Sci, 2015, 6:1151. [52] Willemsen V, Friml J, Grebe M, et al.Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function[J]. Plant Cell, 2003, 15(3):612-625. [53] Cui Y, Zhao Q, Gao C, et al.Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis[J]. Plant Cell, 2014, 26(5):2080-2097. [54] Cui Y, Zhao Q, Xie HT, et al.MONENSIN SENSITIVITY1(MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1(CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development[J]. Plant Physiology, 2017, 173(1):206-218. [55] Nordmann M, Cabrera M, Perz A, et al.The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7[J]. Current Biology, 2010, 20(18):1654-1659. [56] Balderhaar HJ, Ungermann C.CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion[J]. Journal of Cell Science, 2013, 126(6):1307-1316. [57] Takemoto K, Ebine K, Askani JC, et al.Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10):2457-2466. [58] Hunter MR, Scourfield EJ, Emmott E, Graham SC.VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction[J]. The Biochemical Journal, 2017, 474(21):3615-3626. [59] Hao L, Liu J, Zhong S, et al.AtVPS41-mediated endocytic pathway is essential for pollen tube-stigma interaction in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22):6307-6312. [60] Tan X, Wei J, Li B, et al.AtVPS11 is essential for vacuole biogenesis in embryo and participates in pollen tube growth in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 491(3):794-799. [61] Zhou LZ, Li S, Feng QN, et al.Protein S-ACYL Transferase10 is critical for development and salt tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(3):1093-1107. [62] Feng QN, Li S, Zhang Y.Update on adaptor protein-3 in Arabidopsis[J]. Plant Signaling & Behavior, 2017, 12(8):e1356969. [63] Feng QN, Liang X, Li S, & Zhang Y. The ADAPTOR PROTEIN-3 complex mediates pollen tube growth by coordinating vacuolar targeting and organization[J]. Plant Physiology, 2018, 177(1):216-225. [64] Feng C, Wang JG, Liu HH, Li S, Zhang Y.Arabidopsis adaptor protein 1G is critical for pollen development[J]. Journal of Integrative Plant Biology, 2017, 59(9):594-599. [65] Weitbrecht K, Müller K, & Leubner-Metzger G. First off the mark:early seed germination[J]. Journal of Experimental Botany, 2011, 62(10):3289-3309. [66] Koornneef M, Bentsink L, Hilhorst H.Seed dormancy and germination[J]. Current Opinion in Plant Biology, 2002, 5(1):33-36. [67] Arc E, Sechet J, Corbineau F, et al.ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination[J]. Front Plant Sci, 2013, 4:63. [68] Hancock JT, Neill SJ, Wilson ID.Nitric oxide and ABA in the control of plant function[J]. Plant Science, 2011, 181(5):555-559. [69] Arc E, Galland M, Godin B, et al.Nitric oxide implication in the control of seed dormancy and germination[J]. Front Plant Sci, 2013, 4:346. [70] Peng J, Harberd NP.The role of GA-mediated signalling in the control of seed germination[J]. Current Opinion in Plant Biology, 2002, 5(5):376-381. [71] Das SS, Karmakar P, Nandi AK, Sanan-Mishra N.Small RNA mediated regulation of seed germination[J]. Front Plant Sci, 2015, 6. [72] Penfield S, King J.Towards a systems biology approach to understanding seed dormancy and germination[J]. Proc Biol Sci, 2009, 276(1673):3561-3569. [73] Li L, Shimada T, Takahashi H, et al.MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana[J]. Plant Cell, 2006, 18(12):3535-3547. [74] Li L, Shimada T, Takahashi H, et al.MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana[J]. Plant J, 2013, 76(5):781-791. [75] Zhao P, Liu F, Zhang B, et al.MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport[J]. Physiologia Plantarum, 2013, 148(2):246-260. |
[1] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[2] | 莫黎杰, 刘夏瞳, 李慧, 陆海. 植物半胱氨酸蛋白酶在植物生长发育中的功能研究[J]. 生物技术通报, 2021, 37(6): 202-212. |
[3] | 朱建峰, 杨秀艳, 武海雯, 张华新. 植物种子萌发期耐盐碱性提高技术研究进展[J]. 生物技术通报, 2020, 36(2): 158-168. |
[4] | 李桂玲, 王琦, 王金水, 贾峰. 重金属对植物种子萌发胁迫及缓解的机制[J]. 生物技术通报, 2019, 35(6): 147-155. |
[5] | 吴志明,钟敏,鹿承建,朱曼宁,杜起风,李昆太,. 新型抗真菌活性物质农抗N2粗提物对水稻种子萌发的影响[J]. 生物技术通报, 2017, 33(9): 153-159. |
[6] | 邸惠, 张继权, 吕建洲, 马齐云. Flor-essence对小麦种子萌发和幼苗生长的影响[J]. 生物技术通报, 2017, 33(8): 58-62. |
[7] | 杨文玲,岳丹丹,李冠杰,刘莹莹,宁萌,刘莉,巩涛,王继雯,陈国参. 铅铬胁迫对小麦种子萌发及幼苗脯氨酸含量的影响[J]. 生物技术通报, 2015, 31(12): 110-114. |
[8] | 于胜楠;崔继哲;. PIN蛋白在生长素极性运输中的作用[J]. , 2009, 0(03): 20-24. |
[9] | 李思经;. 植物抗涝反应研究[J]. , 1997, 0(05): 51-52. |
[10] | 李思经. FLAVR SAVR基因已获欧洲专利[J]. , 1995, 0(05): 16-17. |
[11] | 王旭宁;. 喜马拉雅长叶松离体繁殖中倒向胚胎技术的商业潜力[J]. , 1991, 0(03): 12-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||