[1] Valiev R. Materials science - Nanomaterial advantage[J]. Nature, 2002, 419(6910):887, 889. [2] 白木, 周洁. 纳米材料的光学特性[J]. 机电新产品导报, 2002(Z1):149-150. [3] de Melo-Diogo D, Pais-Silva C, Dias DR, et al. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Adv Healthc Mater, 2017, 6(10). doi:10.1002/adhm.20170073. [4] Lin VS, Motesharei K, Dancil KP, et al.A porous silicon-based optical interferometric biosensor[J]. Science, 1997, 278(5339):840-843. [5] Li P, Jia ZH, Lu XY, et al.Spectrometer-free biological detection method using porous silicon microcavity devices[J]. Optics Express, 2015, 23(19):24626-24633. [6] Jenie SNA, Prieto-Simon B, Voelcker NH.Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcav-ities as fluorescence enhancers[J]. Biosensors & Bioelectronics, 2015, 74:637-643. [7] Hou LR, Zhang Q, Ling LT, et al.Interfacial fabrication of single-crystalline Zn Te nanorods with high blue fluorescence[J]. J Am Chem Soc, 2013, 135(29):10618-10621. [8] Rosenthal SJ.Bar-coding biomolecules with fluorescent nanocrystals[J]. Nature Biotechnology, 2001, 19(7):621-622. [9] Wegner KD, Hildebrandt N.Quantum dots:bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chem Soc Rev, 2015, 44(14):4792-4834. [10] 穆亲. 量子点荧光探针的设计及检测应用[D]. 上海:华东理工大学, 2014 [11] Xu X, Ray R, Gu Y, et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2015, 126(40):12736-12737. [12] 朱守俊. 碳基荧光材料的制备、发光机理及水相应用[D]. 长春:吉林大学, 2014, . [13] Kroto HW, Heath JR, O’Brien SC, et al. C60:Buckminsterfull-erene[J]. Nature, 1985, 318(6042):162-163. [14] Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. [15] Du X, Skachko I, Barker A, et al.Approaching ballistic transport in suspended graphene[J]. Nat Nanotechnol, 2008, 8:491-495. [16] Wu T, Shen H, Sun L, et al.Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid[J]. New J Chem, 2012, 36(6):1385-1391. [17] Ponomarenko LA, Schedin F, Katsnelson MI, et al.Chaotic Dirac billiard in graphene quantum dots[J]. Science, 2007, 320(5874):356-358. [18] Luo PH, Ji Z, Li C, et al.Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance[J]. Nanoscale, 2013, 5(16):7361-7367. [19] Zhou W, Gao X, Liu DB, et al.Gold Nanoparticles for in vitro diagnostics[J]. Chem Rev, 2015, 115(19):10575-10636. [20] 靳浪平, 王平, 蒋中英. 金纳米颗粒在电化学传感中的应用[J].化学与生物工程,2015(6):1-5. [21] Zhao W, Brook MA, Li Y.Design of gold nanoparticle-based colorimetric biosensing assays[J]. Chembiochem, 2008, 15:2363. [22] Zheng J, Zhang C, Dickson RM.Highly fluorescent, water-soluble, size-tunable gold quantum dots[J]. Physical Review Letters, 2004, 93(7):077402. [23] Lin J, Lee CH, Hsieh JT, et al.Review:Synthesis of fluorescent metallic nanoclusters toward biomedical application:recent progress and present challenges[J]. Journal of Medical & Biological Engineering, 2009, 29(6):276-283. [24] Shang L, Dong SJ, Nienhaus GU.Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications[J]. Nano Today, 2011, 6(4):401-418. [25] Shang L, Nienhaus GU.Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging[J]. Biophysical Reviews, 2012, 4(4):313-322. [26] Young JK, Figueroa ER, Drezek RA.Tunable Nanostructures as photothermal theranostic agents[J]. Ann Biomed Eng, 2012, 40(2):438-459. [27] Huang XH, El-Sayed IH, Qian W, et al.Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. J Am Chem Soc, 2006, 128(6):2115-2120. [28] Gao YP, Li YS, Wang Y, et al.Controlled Synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection[J]. Small, 2015, 11(1):77-83. [29] Hirsch LR, Stafford RJ, Bankson JA, et al.Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003, 100(23):13549-13554. [30] Sun YG, Mayers BT, Xia YN.Template-engaged replacement reaction:A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors[J]. Nano Lett, 2002, 5:481-485. [31] Pallavicini P, Bernhard C, Chirico G, et al.Gold nanostars co-coated with the Cu(II)complex of a tetraazamacrocyclic ligand[J]. Dalton Trans, 2015, 44(12):5652-5661. [32] Boca SC, Potara M, Gabudean AM, et al.Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy[J]. Cancer Letters, 2011, 311(2):131-140. [33] Manikandan M, Hasan N,Wu HF.Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells[J]. Biomaterials, 2013, 34(23):5833-5842. ?[34]赵承志, 李万万. 无机纳米材料用于肿瘤光热治疗的研究进展[J]. 肿瘤, 2017, 37(3):289-294. [35] Huang XQ, Tang SH, Mu XL, et al.Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat Nanotechnol, 2011, 6(1):28-32. [36] Zhou J, Liu Z,Li FY.Upconversion nanophosphors for small-animal imaging[J]. Chem Soc Rev, 2012, 41(3):1323-1349. [37] Bartelmess J, Quinn SJ, Giordani S.Carbon nanomaterials:multi-functional agents for biomedical fluorescence and Raman imaging[J]. Chem Soc Rev, 2015, 44(14):4672-4698. [38] O’Connell M, Wisdom JA, Dai H, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proc Natl Acad Sci USA, 2005, 102(33):11600-11605. [39] Chakravarty P, Marches R, Zimmerman NS, et al.Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes[J]. Proc Natl Acad Sci USA, 2008, 25:8697. [40] Hashida Y, Tanaka H, Zhou S, et al.Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite[J]. J Control Release, 2014, 173(1):59-66. [41] Novoselov KS, Geim AK, Morozov SV, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 5696:666. [42] Zhu X, Zhang Y, Huang H, et al.Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor[J]. Journal of Biomaterials Applications, 2016, 30(8):480-481. [43] Robinson JT, Tabakman SM, Liang YY, et al.Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. J Am Chem Soc, 2011, 133(17):6825-6831. [44] Yang K, Wan J, Zhang S, et al.The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J]. Biomaterials, 2012, 33(7):2206-2214. [45] Su SH, Wang JL, Vargas E, et al.Porphyrin immobilized nano-graphene oxide for enhanced and targeted photothermal therapy of brain cancer[J]. ACS Biomater Sci Eng, 2016, 2(8):429-437. [46] Li Y, Lu W, Huang Q, et al.Copper sulfide nanoparticles for photothermal ablation of tumor cells[J]. Nanomedicine, 2010, 5(8):1161-1171. [47] Chou SS, Kaehr B, Kim J, et al.Chemically Exfoliated MoS2 as near-infrared photothermal agents[J]. Angew Chem Int Ed Engl, 2013, 52(15):4160-4164. [48] Wang S, Li X, Chen Y, et al.A facile one-pot synthesis of a two-dimensional moS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy[J]. Adv Mater, 2015, 27(17):2775-2782. [49] Cheng L, Liu J, Gu X, et al.PEGylated WS(2)nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy[J]. Adv Mater, 2014, 26(12):1886-1893. [50] 张宏遒, 梅林. 磁性纳米颗粒在癌症诊疗一体化中的应用进展[J]. 国际生物医学工程杂志, 2016, 39(2):120-125. [51] Chen H, Burnett J, Zhang F, et al.Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy[J]. Journal of Materials Chemistry B, 2014, 2(7):757-765. [52] Sun Z, Xie H, Tang S, et al.Ultrasmall black phosphorus quantum dots:synthesis and use as photothermal agents[J]. Angew Chem Int Ed Engl, 2015, 127(39):11526-11530. [53] Liu Y, Li L, Guo Q, et al.Novel Cs-based upconversion nanopart-icles as dual-modal CT and UCL imaging agents for chemo-photothermal synergistic therapy[J]. Theranostics, 2016, 6(10):1491-1505. [54] 张小娟, 李文星. 用于肿瘤光热治疗的纳米材料研究进展[J]. 中国医药工业杂志, 2016, 47(8):1065-1069. [55] 宋雪娇, 刘庄. 有机纳米材料在肿瘤光热治疗中的应用[J]. 化学通报, 2015, 78(4):292-298. [56] Zheng X, Xing D, Zhou F, et al.Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy[J]. Mol Pharm, 2011, 8(2):447-456. [57] Qian C, Liu X, Zeng J, et al.Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors[J]. Biomaterials, 2016, 98:23-30. [58] Lovell JF, Jin CS, Huynh E, et al.Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10(4):324-332. [59] Fu GL, Liu W, Feng SS, et al.Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy[J]. Chem Commun, 2012, 48(94):11567-11569. [60] Cheng L, Gong H, Zhu WW, et al.PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37):9844-9852. [61] Cai XJ, Jia XQ, Gao W, et al.A Versatile Nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy[J]. Adv Funct Mater, 2015, 25(17):2520-2529. [62] Yang J, Choi J, Bang D, et al.Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angew Chem Int Ed Engl, 2011, 50(2):441-444. [63] Yang K, Xu H, Cheng L, et al.In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Adv Mater, 2012, 24(41):5586-5592. [64] Cheng L, Yang K, Chen Q, et al.Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 2012, 6(6):5605. [65] Liu Y, Ai K, Liu J, et al.Dopamine-melanin colloidal nanospheres:an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Adv Mater, 2013, 25(9):1353-1359. [66] Huang S, Kannadorai RK, Chen Y, et al.A narrow-bandgap benzobisthiadiazole derivative with high near-infrared photothermal conversion efficiency and robust photostability for cancer therapy[J]. Chem Commun, 2015, 51(20):4223-4226. [67] Yao J, Yang M,Duan Y. Chemistry, Biology,medicine of fluorescent nanomaterials and related systems:new insights into biosensing, bioimaging, genomics, diagnostics and therapy[J]. Chem Rev, 2014, 114(12):6130-6178. [68] Lei JP, Ju HX.Signal amplification using functional nanomaterials for biosensing[J]. Chem Soc Rev, 2012, 41(6):2122-2134. [69] Yue Q, Shen T, Lei W, et al.A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization[J]. Biosensors & Bioelectronics, 2014, 56(56):231-236. [70] 钱栋梁, 葛道晗, 程产贵. 石墨烯对多硅光学性质的影响[J]. 微纳电子技术, 2017(9):585-590. [71] Byun JY, Shin YB, Kim DM, et al.A colorimetric homogeneous immunoassay system for the C-reactive protein[J]. Analyst, 2013, 138(5):1538-1543. [72] Mirkin CA, Letsinger RL, Mucic RC, et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(6592):607-609. [73] Qiang W, Liu H, Li W, et al.Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles[J]. Anal Chim Acta, 2014, 828(5800):92-98. [74] Sun XL, Zhu B, Ji DK, et al.Selective fluorescence detection of monosaccharides using a material composite formed between graphene oxide and boronate-based receptors[J]. ACS Appl Mater Interfaces, 2014, 6(13):10078-10082. [75] Liu J, Wang C, Jiang Y, et al.Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules[J]. Anal Chem, 2013, 85(3):1424-1430. [76] Mal NK, Fujiwara M, Tanaka Y.Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature, 2003, 421(6921):350-353. [77] Yang Y, Lin YZ, et al.Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy[J]. J Colloid Interface Sci, 2017, 508:323-331. [78] You J, Zhang G, Li C.Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041. [79] Wei Q, Chen Y, Ma X, et al.High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy[J]. Adv Funct Mater, 2018. doi:10.1002/adfm.201704634. [80] de la Rica R, Aili D,Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics[J]. Advanced Drug Delivery Reviews, 2012, 64(11):967-978. [81] Li GL, Chen YD, Zhang Lň, et al.Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanoparticles for dual-mode imaging and ph/nir-responsive drug delivery[J]. Nano-Micro Letters, 2018, 10(1):7. [82] Zhu H, Zhao J, Lin X, et al.Design, synthesis and evaluation of dual-modality glyco-nanoparticles for tumor imaging[J]. Molecules, 2013, 18(6):6425. [83] Zhu, Hua, Li, et al. Design and Synthesis of ~(111)In-CCPM-RGD nanoparticles for dual-modality molecular imaging[J]. Acta Chimica Sinica, 2014, 72(4):427. [84] Wang LF, Zhang M, Tan BK, et al.Preparation of nanobubbles carrying androgen receptor sirna and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation[J]. PLoS One, 2014, 9(5):e96586. [85] Funkhouser J.Reinventing pharma:The theranostic revolution[J]. 2002. [86] 杜若鸿. 叶酸受体介导的磁性纳米给药系统的构建及用于肿瘤诊治的实验研究[D]. 合肥:中国科学技术大学, 2017, . [87] Li C, Zhang Y, Li Z, et al.Light-responsive biodegradable nanorattles for cancer theranostics[J]. Adv Mater, 2018, 30(8). doi:10.1002/adma.201706150. |