生物技术通报 ›› 2019, Vol. 35 ›› Issue (4): 151-162.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0944
余薇薇1, 杜邦昊1, 张敏讷1, 万巧玲2, 杨硕1, 赵晨菊1
收稿日期:
2018-11-04
出版日期:
2019-04-26
发布日期:
2019-05-05
作者简介:
余薇薇,女,博士,副教授,研究方向:污废水资源化利用;E-mail:yu11237@cqjtu.edu.cn
基金资助:
YU Wei-wei1, DU Bang-hao1, ZHANG Min-ne1, WAN Qiao-ling2, YANG Shuo1, ZHAO Chen-ju1
Received:
2018-11-04
Published:
2019-04-26
Online:
2019-05-05
摘要: 天然类固醇雌激素(SEs)可分为自由态(FEs)和结合态(CEs)两大类,环境中SEs的广泛存在对人类和动物的内分泌系统产生不同程度的干扰,危害生态系统的多样性及稳定性。目前,多种酶对环境中不同形态SEs的催化去除起到重要作用,总结了环境中氧化还原酶对FEs以及水解酶对CEs的去除作用,并阐述不同形态SEs的主要酶降解转化机理与路径。氧化还原酶催化FEs形成自由基,通过C-O-C、C-C共价键自耦合、相互耦合形成聚合产物,该过程易受到环境中有机质的影响;水解酶则通过解离硫酸盐或葡糖苷酸盐结合基团将CEs水解为相对应的FEs,硫酸盐结合态雌激素不易被解离,在环境中稳定性更强。讨论了酶在实际应用中存在的问题,对酶在污水及土壤环境中SEs的去除、酶的联用、固定化酶、酶工程等方面进行了展望,旨为环境中两种形态雌激素的酶降解转化研究提供理论借鉴。
余薇薇, 杜邦昊, 张敏讷, 万巧玲, 杨硕, 赵晨菊. 环境中自由及结合态雌激素的酶降解转化研究进展[J]. 生物技术通报, 2019, 35(4): 151-162.
YU Wei-wei, DU Bang-hao, ZHANG Min-ne, WAN Qiao-ling, YANG Shuo, ZHAO Chen-ju. A Review on Enzymatic Degradation and Transformation Mechanisms of Free and Conjugated Estrogens in the Environment[J]. Biotechnology Bulletin, 2019, 35(4): 151-162.
[1] Jacobs MN, Marczylo EL, Guerrerobosagna C, et al.Marked for life:Epigenetic effects of endocrine disrupting chemicals[J]. Annual Review of Environment & Resources, 2017, 42(1):105-160. [2] 杨先海, 刘会会, 刘济宁, 等. 国外环境内分泌干扰物管控现状及我国的对策[J]. 生态与农村环境学报, 2018, 34(2):104-113. [3] 国务院. 水污染防治行动计划[EB/OL]. http://www.gov. cn/ zhengce/content/2015-04/16/content_9613. htm. [4] Yu WW, Du BH, Yang L, et al.Occurrence, sorption, and transfor-mation of free and conjugated natural steroid estrogens in the envi-ronment[J]. Environmental Science and Pollution Research, 2019, 26(10):9443-9468. [5] 宋晓明, 杨悦锁, 温玉娟, 等. 雌激素在地下环境中的归宿及其生态调控[J]. 中国环境科学, 2016, 36(9):2828-2840. [6] 余薇薇, 朱家悦, 陈垚, 等. 集约化养殖场中类固醇雌激素的环境行为与处理途径[J]. 环境工程, 2017, 35(3):174-178. [7] 万巧玲, 王龙, 余薇薇. 在线SPE-UPLC-MS-MS快速检测水样中3种痕量类固醇雌激素[J]. 化学研究与应用, 2018, 30(7):1186-1189. [8] Adeel M, Song X, Wang Y, et al.Environmental impact of estrogens on human, animal and plant life:A critical review[J]. Environ-ment International, 2016, 99:107-119. [9] Czarny K, Szczukocki D, Krawczyk B, et al.The impact of estrogens on aquatic organisms and methods for their determination[J]. Crit Rev Environ Sci Technol, 2017, 47(11):909-963. [10] 王明泉, 李圭白, 贾瑞宝, 等. 城市水系统雌激素综合毒性效应的CALUX分析法优化[J]. 中国给水排水, 2015, 31(23):72-76. [11] Cabana H, Jones JP, Agathos SN.Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes:A review[J]. Engineering in Life Sciences, 2007, 7(5):429-456. [12] 李阳, 蒋国翔, 牛军峰, 等. 漆酶催化氧化水中有机污染物[J]. 化学进展, 2009, 21(10):2028-2036. [13] 冯义平, 毛亮, 董仕鹏, 等. 过氧化物酶催化去除水体中酚类内分泌干扰物的研究进展[J]. 环境化学, 2013, (7):1218-1225. [14] Gasser CA, Ammann EM, et al.Laccases to take on the challenge of emerging organic contaminants in wastewater[J]. Appl Microbiol Biotechnol, 2014, 98(24):9931-9952. [15] Cajthaml T.Biodegradation of endocrine-disrupting compounds by ligninolytic fungi:mechanisms involved in the degradation[J]. Environmental Microbiology, 2015, 17(12):4822-4834. [16] Liu ZH, Lu GN, et al.Removal of natural estrogens and their conjugates in municipal wastewater treatment plants:a critical review[J]. Environ Sci Technol, 2015, 49(9):5288-5300. [17] Barrios-Estrada C, De JRM, et al.Emergent contaminants:Endocrine disruptors and their laccase-assisted degradation-A review[J]. Sci Total Environ, 2017, 612:1516-1531. [18] Auriol M, Filali-Meknassi Y, et al.Natural and synthetic hormone removal using the horseradish peroxidase enzyme:temperature and pH effects[J]. Water Res, 2006, 40(15):2847-2856. [19] Mao L, Huang Q, Lu J, et al.Ligninase-mediated removal of natural and synthetic estrogens from water:I. Reaction behaviors[J]. Environ Sci Technol, 2009, 43(2):374-379. [20] Lloret L, Eibes G, Moreira MT, et al.Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products[J]. Environ Sci Technol, 2013, 47(9):4536-4543. [21] Taboada-Puig R, Eibes G, Lloret L, et al.Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds[J]. New Biotechnology, 2015, 33(1):187-195. [22] Tanaka T, Tamura T, Ishizaki Y, et al.Enzymatic treatment of estrogens and estrogen glucuronide[J]. Journal of Environmental Sciences, 2009, 21(6):731-735. [23] Duong CN, Lee JH, Lim BJ, et al.Biodegradation of estrogen conjugates by bacteria isolated from river sediments[J]. Water Science & Technology, 2011, 64(8):1750-1758. [24] Scherr FF, Sarmah AK, Di HJ, et al.Degradation and metabolite formation of 17β-estradiol-3-sulphate in New Zealand pasture soils[J]. Environment International, 2009, 35(2):291-297. [25] 阳春, 纪中旭, 胡碧波, 等. 污水中基于酶活性分析的硫酸雌酮雌激素效应[J]. 中国环境科学, 2018, 38(1):369-373. [26] Chen YL, Yu CP, Lee TH, et al.Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways[J]. Cell Chemical Biology, 2017, 24(6):1-13. [27] 田克俭, 孟繁星, 霍洪亮. 环境雌激素的微生物降解[J]. 微生物学报, 2019, 59(3)442-453. [28] Enzyme Database - BRENDA[EB/OL]. http://www.brenda-enzymes. info/index. php. [29] Harms H, Schlosser D, Wick LY.Untapped potential:exploiting fungi in bioremediation of hazardous chemicals[J]. Nature Reviews Microbiology, 2011, 9(3):177-192. [30] Research Collaboratory for Structural Bioinformatics Protein Data Bank, RCSB PDB. [EB/OL].http://www. rcsb. org. [31] Auriol M, et al.Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater:Efficiency of horseradish peroxidase and laccase from Trametes versicolor[J]. Chemosphere, 2008, 70(3):445-452. [32] Mao L, Lu J, et al.Ligninase-mediated removal of natural and syn-thetic estrogens from water:II. Reactions of 17β-estradiol[J]. Environ Sci Technol, 2010, 44(7):2599-2604. [33] Mao L, Huang Q, et al.Ligninase-mediated removal of 17β-estradiol from water in the presence of natural organic matter:efficiency and pathways[J]. Chemosphere, 2010, 80(4):469-473. [34] 夏青, 谢卫平, 刘国强, 等. 漆酶催化氧化水中雌激素的研究[J]. 环境科学, 2013, 34(8):3119-3124. [35] 洪伟杰, 张朝晖, 芦国营. 辣根过氧化物酶的结构与作用机制[J]. 生命的化学, 2005, 25(1):33-36. [36] Asif MB, Hai FI, Hou J, et al.Impact of wastewater derived dissolved interfering compounds on growth, enzymatic activity and trace organic contaminant removal of white rot fungi - A critical review[J]. J Environ Manage, 2017, 201:89-109. [37] Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. Fungal laccases[J]. Fungal Biol Rev, 2013, 27(3-4):67-82. [38] Ba S, Arsenault A, Hassani T, et al.Laccase immobilization and insolubilization:from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment[J]. Critical Rev Biotechnol, 2013, 33(4):404-418. [39] Lloret L, Eibes G, Feijoo G, et al. Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors[J]. J Hazard Materi, 2012, 213-214(2):175-183. [40] Mao L, Lu J, Gao S, et al.Transformation of 17β-estradiol mediated by lignin peroxidase:the role of veratryl alcohol[J]. Arch Environ Contam Toxicol, 2010, 59(1):13-19. [41] Wang J, Majima N, Hirai H, et al.Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624[J]. Current Microbiology, 2012, 64(3):300-303. [42] Eibes G, Debernardi G, Feijoo G, et al.Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase[J]. Biodegradation, 2011, 22(3):539-550. [43] Taboada-Puig R, Lu-Chau TA, Eibes G, et al.Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system[J]. Biotechnology Progress, 2015, 31(4):908-916. [44] Tamagawa Y, Yamaki R, Hirai H, et al.Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi[J]. Chemosphere, 2006, 65(1):97-101. [45] Nguyen LN, Hai FI, Price WE, et al.Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor:Complementary role of membrane retention and enzymatic degradation[J]. Int Biodeter Biodegr, 2015, 99:115-122. [46] Auriol M, Filali-Meknassi Y, Tyagi RD, et al.Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater[J]. Water Res, 2007, 41(15):3281-3288. [47] Spina F, Cordero C, Schilirò T, et al.Removal of micropollutants by fungal laccases in model solution and municipal wastewater:evaluation of estrogenic activity and ecotoxicity[J]. Journal of Cleaner Production, 2015, 100:185-194. [48] Singh R, Cabrera ML, Radcliffe DE, et al.Laccase mediated transformation of 17β-estradiol in soil[J]. Environmental Pollution, 2015, 197:28-35. [49] Liu J, Luo Q, Huang Q.Removal of 17 β-estradiol from poultry litter via solid state cultivation of lignolytic fungi[J]. Journal of Cleaner Production, 2016, 139:1400-1407. [50] Nicotra S, Intra A, Ottolina G, et al.Laccase-mediated oxidation of the steroid hormone 17β-estradiol in organic solvents[J]. Tetrahedron Asymmetry, 2004, 15(18):2927-2931. [51] Sharma B, Dangi AK, Shukla P.Contemporary enzyme based technologies for bioremediation:A review[J]. J Environ Manage, 2018, 210:10-22. [52] Alneyadi AH, Rauf MA, Ashraf SS.Oxidoreductases for the remediation of organic pollutants in water - a critical review[J]. Critical Rev Biotechnol, 2018, 38(7):1-18. [53] Pollegioni L, Tonin F, Rosini E.Lignin-degrading enzymes[J]. FEBS Journal, 2015, 282(7):1190-1213. [54] Voběrková S, Solčány V, Vršanská M, et al.Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates[J]. Chemosphere, 2018, 202:694-707. [55] 夏青. 酶催化氧化耦合反应去除有机污染物的机理及应用研究[D]. 南京:南京农业大学, 2013. [56] Auriol M, Filali-Meknassi Y, Tyagi RD, et al.Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater[J]. Chemosphere, 2007, 68(10):1830-1837. [57] Ruiz-Dueñas FJ, MartãNez AT. Microbial degradation of lignin:how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this[J]. Microbial Biotechnology, 2009, 2(2):164-177. [58] 孙凯, 李雅欣, 李舜尧, 等. 采用HRMS结合13C-同位素比值技术探究水环境中新兴污染物的归趋和转化机制[J]. 环境化学, 2018, 37(6):1223-1231. [59] Shreve MJ, Brockman A, Hartleb M, et al.The white-rot fungus Trametes versicolor reduces the estrogenic activity of a mixture of emerging contaminants in wastewater treatment plant effluent[J]. Int Biodeter Biodegr, 2016, 109:132-140. [60] Nguyen LN, van de Merwe JP, Hai FI, et al. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor:Removal efficiency and effluent toxicity[J]. Bioresour Technol, 2016, 200:477-484. [61] Ashe B, Nguyen LN, Hai FI, et al.Impacts of redox-mediator type on trace organic contaminants degradation by laccase:Degradation efficiency, laccase stability and effluent toxicity[J]. Int Biodeter Biodegr, 2016, 113:169-176. [62] Lloret L, Eibes G, Lú-Chau TA, et al.Laccase-catalyzed degradation of anti-inflammatories and estrogens[J]. Biochemical Engineering Journal, 2010, 51(3):124-131. [63] Yang S, Hai FI, Nghiem LD, et al.Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes:a critical review[J]. Bioresour Technol, 2013, 141(4):97-108. [64] Sei K, Takeda T, Soda SO, et al.Removal characteristics of endocrine-disrupting chemicals by laccase from white-rot fungi[J]. J Environ Sci Health A, 2008, 43(1):53-60. [65] Huang W, Song H, Xie H, et al.Impacts of dissolved organic matter on the removal of 17β-Estradiol using horseradish peroxidase[J]. Water Air & Soil Pollution, 2013, 224(1359):1-10. [66] Sun K, Luo Q, Gao Y, et al.Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid:Resolved by high-resolution mass spectrometry in combination with 13C labeling[J]. Chemosphere, 2016, 145:394-401. [67] Goeppert N, Dror I, Berkowitz B.Fate and transport of free and conjugated estrogens during soil passage[J]. Environmental Pollution, 2015, 206:80-87. [68] 张玉兰, 陈利军. 土壤芳基硫酸酯酶及其活性和农业措施影响[J]. 土壤通报, 2006, 37(4):792-798. [69] Shrestha SL, Casey FX, Hakk H, et al.Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils[J]. Environ Sci Technol, 2012, 46(20):11047-11053. [70] 张真真. 典型环境因素影响AryS活性和CE-S水解机制的初步研究[D]. 重庆:重庆大学, 2014. [71] Stressler T, Seitl I, Kuhn A, et al.Detection, production, and application of microbial arylsulfatases[J]. Applied Microbiology & Biotechnology, 2016, 100(21):9053-9067. [72] Bai XL, Casey FXM, Hakk H, et al.Dissipation and transformation of 17β-estradiol-17-sulfate in soil-water systems[J]. J Hazard Materi, 2013, 260(2):733-739. [73] Scherr FF, Sarmah AK, Di HJ, et al.Modeling degradation and metabolite formation kinetics of estrone-3-sulfate in agricultural soils[J]. Environ Sci Technol, 2008, 42(22):83-88. [74] Liu ZH, Lu GN, Yin H, et al.Sample-preparation methods for direct and indirect analysis of natural estrogens[J]. Trends in Analytical Chemistry, 2015, 64:149-164. [75] Bai XL, Shrestha SL, Casey FXM, et al.Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems[J]. J Contam Hydrol, 2014, 168(6):17-24. [76] Ma L, Yates SR.Degradation and metabolite formation of estrogen conjugates in an agricultural soil[J]. Journal of Pharmaceutical & Biomedical Analysis, 2017, 145:634-640. [77] Ma L, Yates SR.Degradation and metabolite formation of 17β-estradiol-3-glucuronide and 17β-estradiol-3-sulphate in river water and sediment[J]. Water Res, 2018, 139:1-9. [78] Zheng W, Zou YH, Li XL, et al. Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater:comparison of aerobic and anaerobic degradation and metabolite formation[J]. J Hazard Materi, 2013, 258-259(1):109-115. [79] Goeppert N, Dror I, Berkowitz B.Detection, fate and transport of estrogen family hormones in soil[J]. Chemosphere, 2014, 95(1):336-345. [80] Kumar V, Johnson AC, Nakada N, et al. De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water[J]. J Hazard Materi, 2012, 227-228(16):49-54. [81] Blackwell BR, Johnson BJ, Buser MD, et al.Transformation kinetics of trenbolone acetate metabolites and estrogens in urine and feces of implanted steers[J]. Chemosphere, 2015, 138:901-907. [82] Ben WW, Zhu B, Yuan XJ, et al.Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants:Influence of operational parameters and removal pathways[J]. Water Res, 2017, 124:244-250. [83] D’Ascenzo G, Di CA, Gentili A, et al. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities[J]. Sci Total Environ, 2003, 302(1):199-209. [84] Gomes RL, Scrimshaw MD, Lester JN.Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies[J]. Environ Sci Technol, 2009, 43(10):3612-3618. [85] Singh J, Saharan V, Kumar S, et al.Laccase grafted membranes for advanced water filtration systems:a green approach to water purification technology[J]. Critical Rev Biotechnol, 2017, 38(6):1-19. [86] Ma L, Yates SR.A review on structural elucidation of metabolites of environmental steroid hormones via liquid chromatography-mass spectrometry[J]. TrAC-Trends Anal Chem, 2018, 109:142-153. [87] Cabana H, Jones JP, Agathos SN.Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals[J]. Biotechnology & Bioengineering, 2009, 102(6):1582-1592. [88] Taboada-Puig R, Junghanns C, Demarche P, et al.Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase:production, partial characterization and application for the elimination of endocrine disruptors[J]. Bioresour Technol, 2011, 102(11):6593-6599. [89] Lloret L, Eibes G, Feijoo G, et al.Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports[J]. Journal of Biotechnology, 2012, 162(4):404-406. [90] Zdarta J, Meyer AS, Jesionowski T, et al.Developments in support materials for immobilization of oxidoreductases:A comprehensive review[J]. Advances in Colloid and Interface Science, 2018, 258:1-20. [91] 李卓轩, 封开政, 张薇, 等. 纳米酶的催化机制及应用[J]. 科学通报, 2018, 63(21):2128-2139. |
[1] | 徐刘佳, 郑明明. 皮克林乳液酶反应体系的构建与应用研究进展[J]. 生物技术通报, 2021, 37(2): 187-194. |
[2] | 陈林, 潘贞志, 戴毅, 宋丽. 适合流式细胞仪分析的大豆细胞核解离液的筛选与应用[J]. 生物技术通报, 2020, 36(11): 230-237. |
[3] | 茅佳灵, 许琳, 严明. NADP(H)相关的体外合成乳酸途径构建以及性究[J]. 生物技术通报, 2016, 32(9): 260-266. |
[4] | 马艳芬;吕生华;刘岗;董凌霄;李芳;王飞;郑新建;. 生物酶催化聚合的研究进展[J]. , 2010, 0(04): 50-54. |
[5] | 王巍杰;杨永强;吴尚卓;. 脂肪酶催化合成生物柴油的研究进展[J]. , 2010, 0(03): 54-57. |
[6] | 戚娜;朱利民;. 5′-核苷酸的合成方法比较[J]. , 2006, 0(S1): 242-245. |
[7] | 彭立凤;赵汝淇. 有机介质中酶催化活性和选择性的调控[J]. , 1999, 0(06): 28-32. |
[8] | 王颖;. Coors-Biotech生产低热量多糖填充剂[J]. , 1992, 0(03): 17-18. |
[9] | . 酶工程[J]. , 1991, 0(05): 55-70. |
[10] | . 化工上的应用[J]. , 1991, 0(04): 108-110. |
[11] | 李思经;. 通过细胞的选择作用促进L-酪氨酸向L-3,4-二羟苯丙氨酸的生物转化[J]. , 1990, 0(02): 21-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||