[1] 杨赵伟, 曹秀梅, 闫玉杰, 等.微波消解-原子吸收法测定貉肉中重金属含量[J]. 现代畜牧兽医, 2016(2):5-9. [2] 周西林, 王娇娜, 刘迪, 等. 电感耦合等离子体原子发射光谱法在金属材料分析应用技术方面的进展[J]. 冶金分析, 2017, 37(1):39-46. [3] Beauchemin D.Inductively coupled plasma mass spectrometry[J]. Encyclopedia of Spectroscopy & Spectrometry, 2007, 18(7):1345-1346. [4] Liu W, Smith DI, Rechtzigel KJ, et al.Denaturing high-performance liquid chromatography(DHPLC)used in the detection of germline and somatic mutations[J]. Nucleic Acids Research, 2016, 26(6):1396-1400. [5] Purcaro G, Barp L, Beccaria M, et al.Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection[J]. Food Chemistry, 2016, 212:730-738. [6] Alsaafin A, Mckeague M.Functional nucleic acids as in vivo metabolite and ion biosensors[J]. Biosensors & Bioelectronics, 2017, 94:94-106. [7] Du Y, Dong S.Nucleic acid biosensors:Recent advances and perspectives[J]. Analytical Chemistry, 2017, 89(1):189-215. [8] Liu J, Cao Z, Lu Y.Functional nucleic acid sensors[J]. Chemical Reviews, 2009, 109(5):1948-1998. [9] Zhang H, Zhang H, Aldalbahi A, et al.Fluorescent biosensors enabled by graphene and graphene oxide[J]. Biosensors and Bioelectronics, 2017, 89:96-106. [10] Asnaashari M, Kenari RE, Farahmandfar R, et al.Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles[J]. Sensors & Actuators B Chemical, 2018, 265:339-345. [11] Jeong J, Le TT, Kim HD.Single-molecule fluorescence studies on DNA looping[J]. Methods, 2016, 105:34-43. [12] Ali A, Kamra M, Roy S, et al.Enhanced G-Quadruplex DNA stabilization and telomerase inhibition by novel fluorescein derived salen and salphen based Ni(II)and Pd(II)complexes[J]. Bioconjug Chem, 2017, 28(2):341. [13] Weng H, Yan B.A Eu(III)doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II)and sulfide[J]. Analytica Chimica Acta, 2017, 988:89. [14] Fang C, Agarwal A, Buddharaju KD, et al.DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label[J]. Biosensors & Bioelectronics, 2008, 24(2):216-221. [15] Bhowmick R, Islam ASM, Saha U, et al.Rhodamine based turn-on chemosensor for Fe3+ in aqueous medium and interactions of its Fe3+ complex with DNA[J]. New Journal of Chemistry, 2018, 42(20):3435-3443. [16] Gupta G, Das A, Junseong L, et al.Self-assembled BODIPY-based iridium metallarectangles:Cytotoxicity and propensity to bind biomolecules[J]. Chempluschem, 2018, 83(5):339-347. [17] Yeap GY, Hrishikesan E, Chan YH, et al.A new emissive chalcone-based chemosensor armed by coumarin and naphthol with fluorescence “turn-on” properties for selective detection of F- ions[J]. Journal of Fluorescence, 2016, 27(1):1-6. [18] Aparin I, Proskurin GV, Golovin AV, et al.Fine tuning of pyrene excimer fluorescence in molecular beacons by alteration of the monomer structure[J]. Journal of Organic Chemistry, 2017, 82(19):10015. [19] Kim D, Amos R, Gauthier M, et al.Application of pyrene fluorescence to the characterization of hydrophobically modified starch nanoparticles[J]. Langmuir, 2018, 34(29):8611-8621. [20] Ren RXF, Chaudhuri NC, Paris PL, et al.Naphthalene, phenanthrene, and pyrene as DNA base analogues:synthesis, structure, and fluorescence in DNA[J]. Journal of the American Chemical Society, 1996, 27(48):7671-7678. [21] Zheng X, Peng R, Jiang X, et al.Fluorescence resonance energy transfer-based DNA nanoprism with a split aptamer for ATP sensing in living cells[J]. Analytical Chemistry, 2017, 89(20):10941-10947. [22] Shigeto H, Nakatsuka K, Ikeda T, et al.Continuous monitoring of specific mRNA expression responses with a fluorescence resonance energy transfer-based DNA nano-tweezer technique that does not require gene recombination[J]. Analytical Chemistry, 2016, 88(16):7894-7898. [23] Chen Y, Chen L, Ou Y, et al.Enzyme-free detection of DNA based on hybridization chain reaction amplification and fluorescence resonance energy transfer[J]. Sensors & Actuators B Chemical, 2016, 233:691-696. [24] Shamsipur M, Nasirian V, Mansouri K, et al.A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18[J]. Journal of Pharmaceutical & Biomedical Analysis, 2017, 136:140. [25] Duprey JH, Bullen GA, Zhao ZY, et al.Single site discrimination of cytosine, 5-methylcytosine and 5-hydroxymethylcytosine in target DNA using anthracene-tagged fluorescent probes[J]. Acs Chemical Biology, 2016, 11(3):717-721. [26] Mondal S, Pakhira B, Blake AJ, et al.Co(III)and Ni(II)complexes of an anthracene appended aroyl hydrazone:Synthesis, crystal structures, DNA binding and catecholase activity[J]. Polyhedron, 2016, 117:327-337. [27] Šmidlehner T, Badovinac M, Piantanida I.Pyrene-cyanine conjugates as multipurpose fluorescent probes for non-covalent recognition of ds-DNA, RNA and proteins[J]. New Journal of Chemistry, 2018, 42:6655-6663. [28] Huang J, Wu Y, Chen Y, et al.Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids[J]. Angewandte Chemie International Edition, 2011, 50(2):401-404. [29] Huang J, Zhu Z, Bamrungsap S, et al.Competition-mediated pyrene-switching aptasensor:probing lysozyme in human serum with a monomer-excimer fluorescence switch[J]. Analytical Chemistry, 2010, 82(24):10158-10163. [30] Ma H, Yang M, Zhang C, et al.Aggregation-induced emission(AIE)-active fluorescent probes with multisite-binding sites toward ATP sensing and the live cell imaging[J]. Journal of Materials Chemistry B, 2017, 5:8525-8531. [31] Tyagi A, Chu KL, Abidi IH, et al.Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform[J]. Acta Biomaterialia, 2017, 50(334):334-343. [32] Svanvik N, Westman G, Wang D, et al.Light-up probes:thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution[J]. Analytical Biochemistry, 2000, 281(1):26-35. [33] Zhao J, Gao J, Xue W, et al.Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells[J]. Journal of the American Chemical Society, 2018, 140(2):528-581. [34] Wang L, Li Y.Green upconversion nanocrystals for DNA detection.[J]. Chem Commun Camb, 2006(24):2557-2559. [35] Akerele D, Ljolje D, Talundzic E, et al.Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers:PET-PCR[J]. PLoS One, 2017, 12(6):e0179178. [36] Chantzis A, Very T, Daniel C, et al.Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium(II)organometallic complexes[J]. Chemical Physics Letters, 2013, 578(1):133-137. [37] Li J, Lu Y.A highly sensitive and selective catalytic DNA biosensor for lead ions[J]. Journal of the American Chemical Society, 2000, 122(42):10466-10467. [38] Lan T, Furuya K, Lu Y.A highly selective lead sensor based on a classic lead DNAzyme[J]. Chemical Communications, 2010, 46(22):3896-3898. [39] Whitcombe D, Theaker J, Guy SP, et al.Detection of PCR products using self-probing amplicons and fluorescence[J]. Nature Biotechnology, 1999, 17(8):804-807. [40] Uehara H, Nardone G, Nazarenko I, et al.Detection of telomerase activity utilizing energy transfer primers:comparison with gel- and ELISA-based detection[J]. Biotechniques, 1999, 26(3):552-558. [41] Wang H, Kim Y, Liu H, et al.Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring[J]. Journal of the American Chemical Society, 2009, 131(23):8221-8226. [42] Nagraj N, Liu J, Sterling S, et al.DNAzyme catalytic beacon sensors that resist temperature-dependent variations[J]. Chemical Communications, 2009(27):4103-4105. [43] Heller MJ, Morrison LE, Prevatt WD, et al.Light-emitting polynuc-leotide hybridization diagnostic method:CA, EP0070687[P]. 1985. [44] Martí AA, Li X, Jockusch S, et al.Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection[J]. Tetrahedron, 2007, 63(17):3591-3600. |