[1] 戴玉成. 中国多孔菌名录[J]. 菌物学报, 2009, 28:315-327. [2] 戴玉成. 中国木本植物病原木材腐朽菌研究[J]. 菌物学报, 2012, 31:493-509. [3] Dai YC.Hymenochaetaceae(Basidiomycota)in China[J]. Fungal Diversity, 2010, 45:131-343. [4] Reis FS, Martins A, Vasconcelos MH, et al.Functional foods based on extracts or compounds derived from mushrooms[J]. Trends in Food Science & Technology, 2017, 66:48-62. [5] 杜萍, 何双辉, 钱玺, 等. 落叶松锈迷孔菌产多糖液体培养基的优化及其体外抗氧化活性[J]. 菌物学报, 2019, 38(6):951-969. [6] Stavishenko IV.Monitoring of wood-rotting fungal communities in the natural park Kondinskie Ozera(Konda Lakes)[J]. Contemporary Problems of Ecology, 2008, 1(4):496-504. [7] 戴玉成. 中国东北地区木材腐朽菌的多样性[J]. 菌物学报, 2010, 29:801-818. [8] 魏玉莲, 戴玉成. 木材腐朽菌在森林生态系统中的功能[J]. 应用生态学报, 2004, 15(10):1935-1938. [9] Leontievsky AA, Vares T, Lankinen P, et al.Blue and yellow laccases of ligninolytic fungi[J]. FEMS Microbiology Letters, 1997, 156:9-14. [10] Valderrama B, Oliver P, Medrano-Soto A, et al.Evolutionary and structural diversity of fungal laccases[J]. Antonie van Leeuwenhoek, 2003, 84(4):289-299. [11] Baldrian P.Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30:215-242. [12] 吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报, 2019, 35(9):1-10. [13] Claus H.Laccases:structure, reactions, distribution[J]. Micron, 2004, 35:93-96. [14] Madhavi V, Lele SS.Laccase:properties and applications[J]. BioResources, 2009, 4(4):1694-1717. [15] 司静, 李伟, 崔宝凯, 等. 真菌漆酶性质、分子生物学及其应用研究进展[J]. 生物技术通报, 2011(2):48-55. [16] Mayer AM, Staples RC.Laccase:new functions for an old enzyme[J]. Phytochemistry, 2002, 60:551-565. [17] 司静, 崔宝凯, 戴玉成. 栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化[J]. 微生物学通报, 2011, 38(3):405-416. [18] 司静, 崔宝凯, 贺帅, 等. 微酸多年卧孔菌产漆酶条件优化及其在染料脱色中的应用[J]. 应用与环境生物学报, 2011, 17(5):736-741. [19] Si J, Peng F, Cui BK.Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens[J]. Bioresour Technol, 2013, 128:49-57. [20] Pezzella C, Guarino L, Piscitelli A.How to enjoy laccases[J]. Cellular and Molecular Life Sciences, 2015, 72:923-940. [21] Senthivelan T, Kanagaraj J, Panda RC.Recent trends in fungal laccase for various industrial applications:an eco-friendly approach-a review[J]. Biotechnology and Bioprocess Engineering, 2016, 21:19-38. [22] Zheng F, Cui BK, Wu XJ, et al.Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes[J]. International Biodeterioration & Biodegradation, 2016, 110:69-78. [23] Zheng F, An Q, Meng G, et al.A novel laccase from white rot fungus Trametes orientalis:purification, characterization, and application[J]. International Journal of Biological Macromolecules, 2017, 102:758-770. [24] Kudanga T, Nemadziva B, Roes-Hill ML.Laccase catalysis for the synthesis of bioactive compounds[J]. Applied Microbiology and Biotechnology, 2017, 101:13-33. [25] Ma HF, Meng G, Cui BK, et al.Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes:Laccase immobilization and characterization[J]. Chemical Engineering Research and Design, 2018, 132:664-676. [26] Deska M, Kończak B.Immobilized fungal laccase as “green catalyst” for the decolourization process-state of the art[J]. Process Biochemistry, 2019, 84:112-123. [27] Ghosh B, Saha R, Bhattacharya D, et al.Laccase and its source of sustainability in an enzymatic biofuel cell[J]. Biotechnology Technology Reports, 2019, 6:268-278. [28] Kolomytseva MP, Myasoedova NM, Chernykh AM, et al.Laccase isoform diversity in basidiomycete Lentinus strigosus 1566:potential for phenylpropanoid polymerization[J]. International Journal of Biological Macromolecules, 2019, 137:1199-1210. [29] Singh G, Arya SK.Utility of laccase in pulp and paper industry:a progressive step towards the green chemistry[J]. International Journal of Biological Macromolecules, 2019, 134:1070-1084. [30] Kalyani DC, Patil PS, Jadhav JP, et al.Biodegradation of reactive textile dye Red BL1 by an isolated bacterium Pseudomonas sp. SUK1[J]. Bioresour Technol, 2008, 99:4635-4641. [31] Kempken F, Rohlfs M.Fungal secondary metabolite biosynthesis-a chemical defence strategy against antagonistic animals[J]. Fungal Ecology, 2010, 3:107-114. [32] Singh AP, Singh T.Biotechnological applications of wood-rotting fungi:a review[J]. Biomass Bioenergy, 2014, 62:198-206. [33] Kües U.Fungal enzymes for environmental management[J]. Current Opinion in Biotechnology, 2015, 33:268-278. [34] Fisher KJ, Lang GI.Experimental evolution in fungi:an untapped resource[J]. Fungal Genetics and Biology, 2016, 94:88-94. [35] Kubicek CP, Kubicek EM.Enzymatic deconstruction of plant biomass by fungal enzymes[J]. Current Opinion in Chemical Biology, 2016, 35:51-57. [36] Ramesh MA.Inoculating curiosity in fungal biology for a new generation of students[J]. Fungal Biol Rev, 2016, 30:15-23. [37] Schmidt-Dannert C.Biocatalytic portfolio of basidiomycota[J]. Current Opinion in Chemical Biology, 2016, 31:40-49. [38] Wakai S, Arazoe T, Ogino C, et al.Future insights in fungal metabolic engineering[J]. Bioresour Technol, 2017, 245:1314-1326. [39] Paramjeet S, Manasa P, Korrapati N.Biofuels:production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues[J]. Biocatalysis and Agricultural Biotechnology, 2018, 14:57-71. [40] Lange L, Pilgaard B, Herbst FA, et al.Origin of fungal biomass degrading enzymes:evolution, diversity, and function of enzymes of early lineage fungi[J]. Fungal Biol Rev, 2019, 33:82-97. [41] Sperandio GB, Filho EXF.Fungal co-cultures in the lignocellulosic biorefinery context:a review[J]. International Biodeterioration & Biodegradation, 2019, 142:109-123. [42] Riva S.Laccases:blue enzymes for green chemistry[J]. Trends in Biotechnology, 2006, 24(5):219-226. [43] Giardina P, Faraco V, Pezzella C, et al.Laccases:a never-ending story[J]. Cellular and Molecular Life Sciences, 2010, 67:369-385. [44] Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, et al. Fungal laccases[J]. Fungal Biol Rev, 2013, 27:67-82. [45] Jin XC, Ning Y.Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets[J]. Journal of Hazardous Materials, 2013, 262:870-877. [46] 曹可可, 刘宁, 马双新, 等. 大斑刚毛座腔菌高产漆酶条件的响应面优化及酶学特性[J]. 中国农业科学, 2015, 48(11):2165-2175. [47] Ashrafi SD, Nasseri S, Alimohammadi M, et al.Optimization of the enzymatic elimination of flumequine by laccase-mediated system using response surface methodology[J]. Desalination and Water Treatment, 2016, 57(31):14478-14487. [48] Mansor AF, Mohidem NA, Zawawi WNIWM, et al.The optimization of synthesis conditions for laccase entrapment in mesoporous silica microparticles by response surface methodology[J]. Microporous and Mesoporous Materials, 2016, 220:308-314. [49] Jiménez-Barrera D, Chan-Cupul W, Fan ZL, et al.Fungal co-culture increases ligninolytic enzyme activities:statistical optimization using response surface methodology[J]. Preparative Biochemistry and Biotechnology, 2018, 48(9):787-798. [50] 马鸿飞, 崔宝凯, 员瑗, 等. 响应面法优化褐腐真菌竹生薄孔菌产纤维素酶的液体培养基[J]. 生物技术通报, 2018, 34(4):91-101. [51] 邓诗贵, 杨晨军, 冯加洲, 等. 一株木质素降解白腐菌的筛选、鉴定及其产漆酶培养基的优化[J]. 食品研究与开发, 2019, 40(16):178-184. [52] 黑育荣, 陈胜发, 彭修娟, 等. 响应面法优化微波提取桦菌芝三萜类化合物工艺[J]. 化学与生物工程, 2019, 36(9):30-34. [53] 霍光明, 张李阳, 朱枳穆, 等. 响应面法优化链霉菌S10A09发酵产纤维素酶条件[J]. 生物加工过程, 2019, 17(2):138-143. [54] Senthivelan T, Kanagaraj J, Panda RC, et al.Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum:media optimization by response surface methodology(RSM)and central composite rotatable design(CCRD)[J]. Biotechnology Reports, 2019, 23:e00344. [55] Wang JY, Yu SY, Feng FJ, et al.Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks:recyclable biocatalysts with enhanced stability for dye decolorization[J]. Biochemical Engineering Journal, 2019, 150:107285. [56] Wlizło K, Polak J, Jarosz-Wilkołazka A, et al.Novel textile dye obtained through transformation of 2-amino-3-methoxybenzoic acid by free and immobilised laccase from a Pleurotus ostreatus strain[J]. Enzyme and Microbial Technology, 2020, 132:109398. [57] Agrawal K, Verma P.Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422[J]. Biocatalysis and Agricultural Biotechnology, 2019, 21:101291. [58] Jasińska A, Góralczyk-Bińkowska A, Soboń A, et al.Lignocellulose resources for the Myrothecium roridum laccase production and their integrated application for dyes removal[J]. International Journal of Environmental Science and Technology, 2019, 16:4811-4822. [59] Moon SJ, Kim HW, Jeon SJ.Biochemical characterization of a thermostable cobalt- or copper-dependent polyphenol oxidase with dye decolorizing ability from Geobacillus sp. JS12[J]. Enzyme and Microbial Technology, 2018, 118:30-36. [60] 窦欣, 田乔鹏, 王琦, 等. Ganoderma sp. SYBC L48漆酶酶学性质及其对酸性红1的脱色性能[J]. 环境工程学报, 2019, 13(4):856-864. [61] Iark D, Buzzo AJR, Garcia JAA, et al.Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii[J]. Bioresour Technol, 2019, 289:121655. [62] 马倩倩, 赵丽红, 陈威. 漆酶在环境保护中的应用研究进展[J]. 工业安全与环保, 2019, 45(8):100-103. [63] 马倩倩, 赵丽红, 聂飞. 糙皮侧耳C1诱变菌株F-13漆酶催化染料脱色[J]. 科学技术与工程, 2019, 19(6):304-307. [64] Nadaroglu H, Mosber G, Gungor AA, et al.Biodegradation of some azo dyes from wastewater with laccase from Weissella viridescens LB37 immobilized on magnetic chitosan nanoparticles[J]. Journal of Water Process Engineering, 2019, 31:100866. [65] 庞乾辉, 吴一鑫, 俞丽萍, 等. 整体型大孔/介孔PDA/SiO2复合材料固定化漆酶及其在染料降解中的应用[J]. 化工进展, 2019, 38(2):1018-1026. [66] 谭小珊, 王帅杰, 吴科元, 等. 刺芹侧耳产漆酶条件优化及对偶氮染料甲基橙的脱色[J]. 菌物学报, 2019, 38(9):1-8. [67] Zhuo R, Zhang JW, Yu HB, et al.The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways[J]. Chemosphere, 2019, 234:733-745. |