生物技术通报 ›› 2020, Vol. 36 ›› Issue (4): 208-224.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0224
孙雨阁1, 李宸葳, 杜再慧1, 许文涛1,2
收稿日期:
2019-03-16
出版日期:
2020-04-26
发布日期:
2020-04-30
作者简介:
孙雨阁,女,研究方向:功能核酸生物传感器;E-mail:sygsyg@cau.edu.cn
基金资助:
SUN Yu-ge1, LI Chen-wei1, DU Zai-hui1, XU Wen-tao1,2
Received:
2019-03-16
Published:
2020-04-26
Online:
2020-04-30
摘要: 瓣状核酸内切酶-1(Flap endonuclease 1,FEN1)是一种可以识别三碱基重叠结构(三核酸)并对其进行切割,释放出5'-flap片段的结构特异性酶,并且有着高效稳定的切割效率。基于此种特性,通过不同的信号输出方式,FEN1酶现被用于DNA、RNA、病毒等放大检测中。首先对FEN1酶的发现、性质以及作用方面做了相应介绍,然后根据所检测的靶物质不同,对FEN1酶所介导的生物传感器进行分类,主要包括对单核苷酸多态性的检测、甲基化检测、基因型检测、RNA检测、病毒检测、肿瘤检测和微生物检测等。此外,对FEN1酶与纳米材料的结合以及体内表征及治疗也进行了较为详细的介绍。同时,还对传感器之间的原理、灵敏度、特异性及适用领域等方面进行比较和优缺点的简单评价。最后,对FEN1酶所介导的生物传感器的中存在的不足,以及未来的发展方向进行了展望,旨在为今后研发更便携、更灵敏、更准确的FEN1功能核酸生物传感器提供理论参考。
孙雨阁, 李宸葳, 杜再慧, 许文涛. FEN1酶介导的功能核酸生物传感器的研究进展[J]. 生物技术通报, 2020, 36(4): 208-224.
SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors[J]. Biotechnology Bulletin, 2020, 36(4): 208-224.
[1] 雷娜娜. 生物传感器[J]. 生物技术世界, 2015(6):266-266. [2] Harrington JJ, Lieber MR.The characterization of a mammalian DNA structure-specificendonuclease[J]. EMBO J, 1994, 13(5):1235-1246. [3] Klett RP, Cerami A, Reich E.Exonuclease VI, a new nuclease activity associated with E. coli DNA polymerase[J]. Proc Natl Acad Sci USA, 1968, 60(3):943-950. [4] Kelly RB, Atkinson MR, Huberman JA, et al.Excision of thymine dimers and other mismatched sequences by DNA polymerase of Escherichia coli[J]. Nature, 1969. 224(5218):495-501. [5] Lindahl T, Gally JA, Edelman GM.Deoxyribonuclease IV:A new exonuclease from mammalian tissues[J]. Proceedings of the National Academy of Sciences, 1969, 62(2):597-603. [6] Setlow P, Brutlag D, Kornberg A, et al.Deoxyribonucleic acid poly-merase:Two distinct enzymes in one polypeptide:I. A proteolytic fragment containing the polymerase and 3'→5' exonuclease functions[J]. Journal of Biological Chemistry, 1972, 247(1):224-231. [7] Masamune Y, Richardson CC.Strand displacement during deoxyribonucleic acid synthesis at single strand breaks[J]. Journal of Biological Chemistry, 1971, 246(8):2692-2701. [8] Lundquist RC, Olivera BM.Transient generation of displaced single-stranded DNA during nick translation[J]. Cell, 1982, 31(1):53-60. [9] Lyamichev V, Brow MAD.Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases[J]. Science, 1993, 260(5109):778. [10] Lee Bi, Nguyen LH, Barsky D, et. al. Molecular interactions of human Exo1 with DNA[J]. Nucleic Acids Res, 2002, 30(4):942-949. [11] Erica FH, Ghislaine H, Ulrich, H, et al.The acetylatable lysines of human Fen1 are important for endo-and exonuclease activities[J]. J Mol Biol, 2003, 328(1):73-84. [12] Shen B, Singh P, Liu R, et al.Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases[J]. BioEssays, 2005, 27(7):717-729. [13] Henneke G.In vitro reconstitution of RNA primer removal in archaea reveals the existence of two pathways[J]. Biochemical Journal, 2012, 447(2):271-280. [14] Pike JE, Henry RA, Burgers PMJ, et al.An alternative pathway for okazaki fragment processing:Resolution of fold-back flaps by pif1 helicase[J]. J Biol Chem, 2010, 285(53):41712-41723. [15] Ryu GH, Tanaka H, Kim DH, et al.Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast[J]. Nucleic Acids Res, 2004, 32(14):4205-4216. [16] Yang M, Guo H, Wu C, et al.Functional FEN1 polymorphisms are associated with DNA damage levels and lung cancer risk[J]. Human Mutation, 2009, 30(9):1320-1328. [17] Liu L, Zhou C, Zhou L, et al.Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer[J]. Carcinogenesis, 2012, 33(1):119-123. [18] Li Z, Dai HF, Zhou M, et al.Fen1 mutations result in autoimmunity, chronic inflammation and cancers[J]. Nature Medicine, 2007, 13(7):812-819. [19] Singh P, Yang M, Dai H, et al.Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers[J]. Molecular Cancer Research, 2008, 6(11):1710-1717. [20] 马寅姣, 邹秉杰, 王建平, 等. 基于核酸侵入反应的生物分子检测技术的研究进展[J]. 现代生物医学进展, 2011, 11(12):2384-2388. [21] Olivier M.The Invader® assay for SNP genotyping[J]. Mutation Research, 2005, 573(1):103-110. [22] Hall JG, Eis PS, Law SM, et al.Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction[J]. Proceedings of the National Academy of Sciences, 2000, 97(15):8272-8277. [23] Feinberg AP, Tycko B.The history of cancer epigenetics[J]. Nature Reviews Cancer, 2004, 4(2):143-153. [24] Zou H, Allawi H, Cao X, et al.Quantification of methylated markers with a multiplex methylation-specific technology[J]. Clinical Chemistry, 2012, 58(2):375-383. [25] Hsu TM, Law SM, Duan S, et al.Genotyping single-nucleotide polymorphisms by the invader assay with dual-color fluorescence polarization detection[J]. Clinical Chemistry, 2001, 47(8):1373-1377. [26] Berggren WT, Takova T, Olson MC, et al.Multiplexed gene expressionanalysis using the invader RNA assay with MALDI-TOFmass spectrometry detection[J]. Anal, Chem, 2002, 74, 1745-1750. [27] Crain PF, McCloskey JA. Applications of mass spectrometry to the characterization ofoligonucleotides and nucleic acids[J]. Current Opinion in Biotechnology, 1998, 9(1):25-34. [28] Lyamichev VI, Kaiser MW, Lyamicheva NE, et al.Experimental and theoretical analysis of the invasive signal amplification reaction[J]. Biochemistry, 2000, 39(31):9523-9532. [29] Hessner MJ, Budish MA, Friedman KD.Genotyping of factor V G1691A(Leiden)without the use of PCR by invasive cleavage of oligonucleotide probes[J]. Clinical Chemistry, 2000, 46(8):1051-1056. [30] Eis PS, Olson MC, Takova T, et al.An invasive cleavage assay for direct quantitation of specific RNAs[J]. Nature Biotechnology, 2001, 19(7):673-676. [31] Almeida MI, Reis RM, Calin GA.MicroRNA history:Discovery, recent applications, and next frontiers[J]. Mutation Research, 2011, 717(1):1-8. [32] Allawi HT, Dahlberg JE, Olson S, et al.Quantitation of microRNAs using a modified Invader assay[J]. RNA, 2004, 10(7):1153-1161. [33] Arruda Md, Lyamichev VI, Eis PS, et al.Invader technology for DNA and RNA analysis:principles and applications[J]. Expert Review of Molecular Diagnostics, 2002, 2(5):487-496. [34] Cobo F.Application of molecular diagnostic techniques for viral testing[J]. Open Virol J, 2012, 6:104-114. [35] Chenna A, Tian H, Cao L, et al.Multiplex mRNA assay using electrophoretic tags for high-throughput gene expression analysis[J]. Nucleic Acids Research, 2004, 32(16):e126. [36] Ott JJ, Stevens GA, Groeger J, et al.Global epidemiology of hepatitis B virus infection:New estimates of age-specific HBsAg seroprevalence and endemicity[J]. Vaccine, 2012, 30(12):2212-2219. [37] 乔斌, 李艳. 丙型肝炎病毒实验室检测技术进展[J]. 医学综述, 2016, 22(15):2997-3000. [38] Kenichi T, Mariko K, Fumitaka S, et al.Comparative quantitative analysis of hepatitis C mutations at amino acids 70 and 91 in the core region by the Q-Invader assay[J]. Journal of Virological Methods, 2013, 189(1):221-227. [39] Hayashi K, Ishigami M, Ishizu Y, et al.Comparison of direct sequencing and Invader assay for Y93H mutation and response to interferon-free therapy in hepatitis C virus genotype 1b[J]. J Gastroenterol Hepatol, 2018, 33(1):249-255. [40] 刘琳琳, 齐谢敏, 邹秉杰, 等. 基于核酸侵入反应偶联PCR的粪便样本基因甲基化定量分析方法及用于结直肠癌无创筛查[J]. 分析化学, 2018, 46(10):1552-1559. [41] Wang RN, Green J, Wang Z, et al.Bone morphogenetic protein(BMP)signaling in development and human diseases[J]. Genes & Diseases, 2014, 1(1):87-105. [42] Loh K, Chia JA, Greco S, et al.Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development[J]. Genes, Chromosomes and Cancer, 2008, 47(6):449-460. [43] 严志进, 刘云龙, 邹秉杰, 等. 粪便中大肠癌特异性NDRG4基因甲基化水平的超高灵敏定量检测法[J]. 医学研究生学报, 2016, 10:1031-1035. [44] Livak, KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408. [45] Chen WQ, Zheng RS, Baade PD, et al.Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. [46] Paez JG, Jänne PA, Lee JC, et al.EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science, 2004, 304(5676):1497-1500. [47] Naoki K, Soejima K, Okamoto H, et al.The PCR-invader method(structure-specific 5' nuclease-based method), a sensitive method for detecting EGFR gene mutations in lung cancer specimens;comparison with direct sequencing[J]. International Journal of Clinical Oncology, 2011, 16(4):335-344. [48] Kenichi T, Toshikazu Y, Katsumi K, et al.Rapid quantification of periodontitis-related bacteria using a novel modification of invader PLUS technologies[J]. Microbiol Res, 2010, 165(1):43-49. [49] 李军伟, 李小伟. 分枝杆菌临床检验研究[J]. 深圳中西医结合杂志, 2017, 27(14):132-133. [50] Ichimura S, Nagano M, Ito N, et al.Evaluation of the invader assay with the BACTEC MGIT 960 system for prompt isolation and identification of mycobacterial species from clinical specimens[J]. J Clin Microbiol, 2007, 45(10):3316-3322. [51] Nolan JP, Shen B, Park MS, et al.Kinetic analysis of human flap endonuclease-1 by flow cytometry[J]. Biochemistry, 1996, 35(36):11668-11676. [52] Nolan JP, Sklar LA.The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions[J]. Nature Biotechnology, 1998, 16(7):633-638. [53] 何艳, 蒋涛. 基于链置换反应的DNA等温扩增技术应用进展[J]. 医学综述, 2010, 19(1):673-676. [54] Zou B, Song Q, Wang J, et al.Invasive reaction assisted strand-dis-placement signal amplification for sensitive DNA detection[J]. Chemical Communications, 2014, 50(89):13722-13724. [55] Zec HC, Zheng T, Liu L, et al.Programmable microfluidic genoty-ping of plant DNA samples for marker-assisted selection[J]. Microsystems & Nanoengineering, 2018, 4:17097. [56] 邹秉杰, 周国华. 基于核酸侵入反应的基因突变检测方法研究进展[J]. 药学进展, 2015, 39(11):846-854. [57] Xu W, Xue X, Li T, et al.Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification[J]. Angewandte Chemie International Edition, 2009, 48(37):6849-6852. [58] Zou B, Cao X, Wu H, et al.Sensitive and specific colorimetric DNA detection by invasive reaction coupled with nicking endonuclease-assisted nanoparticles amplification[J]. Biosensors and Bioelectronics, 2015, 66:50-54. [59] 梁海燕, 刘文鑫, 杨志刚, 等. 等温核酸扩增技术进展[J]. 中国医学创新, 2017, 14(16):145-148. [60] Lu Y, Ma XP, Wang JP, et al.Visualized detection of single-base difference in multiplexed loop-mediated isothermal amplification amplicons by invasive reaction coupled with oligonucleotide probe-modified gold nanoparticles[J]. Biosensors and Bioelectronics, 2017, 90:388-393. [61] 陈银, 葛以跃, 赵康辰, 等. 环介导等温扩增结合核酸级联侵入反应和纳米金探针显色技术快速检测脑膜炎奈瑟菌[J]. 江苏预防医学, 2018, 29(6):607-610. [62] Song Q, Qi X, Jia H, et al.Invader Assisted enzyme-linked immun-osorbent assay for colorimetric detection of disease biomarkers using oligonucleotide probe-modified gold nanoparticles[J]. J Biomed Nanotechnol, 2016, 12(4):831-839. [63] Simonsen L, Peter S, Roger L, et al.Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project:a modeling study[J]. PLoS Medicine, 2013, 10(11):e1001558. [64] Ito M, Nukuzuma S, Sugie M, et al.Detection of pandemic influenza A(H1N1)2009 virus RNA by real-time reverse transcription polymerase chain reaction[J]. Pediatr Int, 2012, 54(6):959-962. [65] Ge Y, Zhou Q, Zhao K, et al.Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor[J]. Int J Nanomedicine, 2017, 12(4):2645-2656. [66] Zheng L, Dai H, Zhou M, et al.Fen1 mutations result in autoimmunity, chronic inflammation and cancers[J]. Nature Medicine, 2007, 13:812. [67] LaTulippe E, Satagopan J, Smith A, et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease[J]. Cancer Research, 2002, 62(15):4499-4506. [68] Iacobuzio-Donahue CA, Maitra A, Olsen M, et al.Exploration of global gene expression patterns in pancreatic adenocarcinoma using cdna microarrays[J]. The American Journal of Pathology, 2003, 162(4):1151-1162. [69] Kim JM, Sohn HY, Yoon SY, et al.Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells[J]. Clin Cancer Res, 2005, 11:473-482. [70] Sato M, Girard L, Sekine I, et al.Increased expression and no mutation of the Flap endonuclease(FEN1)gene in human lung cancer[J]. Oncogene, 2003, 22(46):7243-7266. [71] Krause A, Combaret V, Iacono I, et al.Genome-wide analysis of gene expression in neuroblastomas detected by mass screening[J]. Cancer Lett, 2005, 225:111-120. [72] 马龙, 王海月, 周津, 等. 基于人皮瓣核酸内切酶抗癌策略的研究进展[J]. 天津科技大学学报, 2019, 3:1-6. [73] Chen B, Zhang Y, Wang Y, et al.Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediateddown-regulation of FEN1 expression[J]. Journal of Steroid Biochemistry & Molecular Biology, 2014, 143(9):11-18. [74] Ma L, Meng Y, Tu C, et al.A cardiac glycoside HTF-1isolated from Helleborusthibetanus Franch displays potentin vitro anti-cancer activity via caspase-9, MAPK and PI3K-Akt-mTOR pathways[J]. Eur J Medl Chem, 2018, 158:743-752. [75] Deshmukh AL, Chandra S, Singh DK, et al.Identification of human flap endonuclease 1(FEN1)inhibitors using a machine learning based consensus virtual screening[J]. Molecular Biosystems, 2017, 13(8):1630-1639. [76] He L, Zhang Y, Sun H, et al.Targeting DNA flap endonuclease1 to impede breast cancer progression[J]. EBioMedicine, 2016, 14, 32-43. |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[3] | 王鹏飞, 杨敏, 朱龙佼, 许文涛. 基于铂纳米团簇的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 235-242. |
[4] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[5] | 方顺燕, 宋丹, 刘艳萍, 徐文娟, 刘佳瑶, 韩向峙, 龙峰. 用于Escherichia coli O157∶H7直接快速检测的倏逝波荧光核酸适配体传感器研究[J]. 生物技术通报, 2020, 36(7): 228-234. |
[6] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[7] | 杨敏, 李舒婷, 杨文平, 李相阳, 许文涛. DNA/银纳米簇介导的功能核酸生物传感器研究进展[J]. 生物技术通报, 2020, 36(6): 245-254. |
[8] | 柳苏月, 田晶晶, 田洪涛, 许文涛. 铽(III)离子及其复合物:从发光特性到传感应用[J]. 生物技术通报, 2020, 36(4): 192-207. |
[9] | 王昕, 朱龙佼, 许文涛, 翟晨, 王书雅, 黄蔚霞. 核酸切割酶在病原微生物检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 182-192. |
[10] | 吴亚, 徐智辉, 张彪, 赵冬芳, 曹文欣, 张兴平. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 193-201. |
[11] | 肖冰, 罗云波, 黄昆仑, 张园, 许文涛. 功能核酸荧光标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(7): 213-221. |
[12] | 谢银侠, 王蔚然, 程楠, 许文涛. 电信号分子在电化学功能核酸生物传感器中的研究进展[J]. 生物技术通报, 2019, 35(5): 157-169. |
[13] | 肖冰, 刘榜, 罗云波, 黄昆仑, 张园, 李夏莹, 张秀杰, 许文涛, 周翔. 功能核酸荧光免标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(3): 194-202. |
[14] | 李宸葳, 杜再慧, 林少华, 罗云波, 许文涛. Pb2+功能核酸生物传感器的研究进展[J]. 生物技术通报, 2019, 35(1): 131-139. |
[15] | 李凯, 罗云波, 许文涛. 10-23脱氧核酶介导的生物传感器研究进展[J]. 生物技术通报, 2019, 35(1): 140-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||