[1] Yang S, Franden MA, Yang Q, et al.Identification of inhibitors in lignocellulosic slurries and determination of their effect on hydrocarbon-producing microorganisms[J]. Front Bioeng Biotech, 2018, 6(23):1-15. [2] Cao GL, Ren NQ, Wang AJ, et al.Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16[J]. Int J Hydrogen Energ, 2010, 35(24):13475-13480. [3] Zhang L, Li X, Yong Q, et al.Impacts of lignocellulose-derived inhibitors on l-lactic acid fermentation by Rhizopus oryzae[J]. Bioresour Technol, 2016, 203:173-180. [4] Yi X, Gu H, Gao Q, et al.Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnol Biofuels, 2015, 8(1):153. [5] Franden MA, Pilath H, Mohagheghi A, et al.Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates[J]. Biotechnol Biofuels, 2013, 6(1):99. [6] Adeboye PT, Bettiga M, Olsson L.The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates[J]. AMB Express, 2014, 4:46. [7] Zhu J, Yang J, Zhu Y, et al.Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776[J]. Bioproc Biosyst Eng, 2014, 37(11):2215-2222. [8] Campos FM, Couto JA, Figueiredo AR, et al.Cell membrane damage induced by phenolic acids on wine lactic acid bacteria[J]. Int J Food Microbiol, 2009, 135(2):144-151. [9] Gu H, Zhang J, Bao J.High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue[J]. Biotechnol Bioeng, 2015, 112(9):1770-1782. [10] 林贝, 李健秀, 刘雪凌. 紫外诱变结合驯化提高酿酒酵母对抑制物耐受性[J]. 生物技术, 2018, 28(1):85-91. [11] Aulitto M, Fusco S, Nickel DB, et al.Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation[J]. Biotechnol Biofuels, 2019, 12(1):45. [12] Narayanan V, Sànchez I Nogué V, Van Niel EWJ, et al. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae[J]. AMB Express, 2016, 6(1):59. [13] Klinke HB, Ahring BK, Schmidt AS, et al.Characterization of degradation products from alkaline wet oxidation of wheat straw[J]. Bioresour Technol, 2002, 82(1):15-26. [14] Zhang J, Chu D, Huang J, et al.Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor[J]. Biotechnol Bioeng, 2010, 105(4):718-728. [15] Narayanan V, Schelin J, Gorwa-Grauslund M, et al.Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase[J]. Biotechnol Biofuels, 2017, 10(1):114. [16] Gu H, Zhang J, Bao J.Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues[J]. Bioresour Technol, 2014, 157:6-13. [17] Jönsson LJ, Martín C.Pretreatment of lignocellulose:Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresour Technol, 2016, 199:103-112. [18] Van Der Pol EC, Vaessen E, Weusthuis RA, et al. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method[J]. Bioresour Technol, 2016, 209:297-304. [19] Qureshi AS, Zhang J, Bao J.High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain[J]. Bioresour Technol, 2015, 189:399-404. [20] 张译之, 苟敏, 汤岳琴. 紫外诱变驯化提高酿酒酵母木糖发酵的抑制物耐受性[J]. 生物技术通报, 2017, 33(9):191-199. [21] Mettetal JT, Muzzey D, Gómez-Uribe C, et al.The frequency depe-ndence of Osmo-adaptation in Saccharomyces cerevisiae[J]. Science, 2008, 319(5862):482-484. [22] Cakar ZP, Alkım C, Turanlı B, et al.Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach[J]. J Biotechnol, 2009, 143(2):130-138. [23] Zacharioudakis I, Gligoris T, Tzamarias D.A yeast catabolic enzyme controls transcriptional memory[J]. Curr Biol, 2007, 17(23):2041-2046. [24] Ben Meriem Z, Khalil Y, Hersen P, et al.Hyperosmotic stress response memory is modulated by gene positioning in yeast[J]. Cells, 2019, 8(6):582. [25] Almeida JRM, Modig T, Petersson A, et al.Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. J Chem Technol Biotechnol, 2007, 82(4):340-349. |