生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 80-90.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1350
成婷1(), 苑帅1, 张晓元2, 林良才1, 李欣1(), 张翠英1()
收稿日期:
2022-11-02
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
张翠英,女,博士,教授,研究方向:现代酿造技术;E-mail: cyzhangcy@tust.edu.cn;作者简介:
成婷,女,硕士研究生,研究方向:现代酿造技术;E-mail: 1375416548@qq.com
基金资助:
CHENG Ting1(), YUAN Shuai1, ZHANG Xiao-yuan2, LIN Liang-cai1, LI Xin1(), ZHANG Cui-ying1()
Received:
2022-11-02
Published:
2023-07-26
Online:
2023-08-17
摘要:
酿酒酵母是工业化生产中常用的微生物,具有耐低pH值、抗逆性强等优点。利用微生物进行生物基产品的生产已成为绿色生物制造的重大发展方向。异丁醇是一种支链高级醇,在化工、能源等领域有较好的应用前景。利用工程酿酒酵母合成的异丁醇是一种可持续、可再生、经济环保的生物能源,有望成为下一代生物燃料。构建高效合成异丁醇的酿酒酵母细胞工厂可以实现生物燃料异丁醇的绿色制造,但目前酿酒酵母合成异丁醇的能力不足,限制了异丁醇的工业化发展,而与合成生物学相结合的理性代谢调控策略是提高微生物异丁醇合成能力的有效方法之一。本文围绕异丁醇合成途径构建、竞争途径阻断、辅因子平衡、合成途径重定位、转录调控因子调节以及耐受性强化几方面,综述了酿酒酵母中异丁醇合成调控策略的研究进展。这些策略显著提高了工程酵母异丁醇的转化率和产率,但在异丁醇工业化生产上仍存在许多不足。为了推动异丁醇的工业化生产,本文讨论了目前酿酒酵母生产异丁醇的瓶颈及解决方法,以期对异丁醇的绿色制造提供有价值的参考。
成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90.
CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2023, 39(7): 80-90.
图2 酿酒酵母中异丁醇合成的分子调控机制 a:Ilv3p辅基Fe-S簇的生物合成;b:调控亚基Ilv6p对Ilv2p的调控
Fig. 2 Molecular regulatory mechanism of isobutanol synthesis in S. cerevisiae a: Biosynthesis of Fe-S cluster(Ilv3p cofactor). b: Regulation of Ilv2p by regulatory subunit Ilv6p
Strain background | Pathway localization | Cofactor-balance | Overexpressing isobutanol synthesis pathway | Block isobutanol competing pathway | Transcription factor regulation | Improved isobutanol tolerance | Isobutanol titer /(mg·L-1) | Isobutanol yield/ (mg·g-1 carbon source) | Carbon source/Medium properties/Fermentation conditions | Reference |
---|---|---|---|---|---|---|---|---|---|---|
YPH499 | √ | √ | 143.0 | 6.6 | Glucose/defined/microaerbic | [ | ||||
CEN.PK2-1C | √ | √ | √ | 376.9 | * | Glucose/defined/aerobic | [ | |||
YPH499 | √ | √ | √ | 224.0 | 12.0 | Glucose/defined/aerobic | [ | |||
CEN.PK2-1C | √ | √ | 330.9 | * | Glucose/defined/aerobic | [ | ||||
CEN.PK2-1C | √ | √ | √ | √ | 1 245.0 | 12.5 | Glucose/defined/aerobic | [ | ||
D452-2 | √ | √ | √ | 662.0 | 6.7 | Glucose/defined/microaerbic | [ | |||
CEN.PK113-7D | √ | √ | 2 090.0 | 59.6 | Glucose/defined/aerobic | [ | ||||
CEN.PK2-1C | √ | √ | √ | 263.2 | * | Glucose/defined/aerobic | [ | |||
CEN.PK113-5D | √ | √ | 190.0 | * | Glucose/defined/anaerobic | [ | ||||
D452-2 | √ | √ | 151.0 | * | Glucose/complex/microaerbic | [ | ||||
W303-1A | √ | √ | 404.0 | 10.1 | Glucose/complex/microaerbic | [ | ||||
W303-1A | √ | √ | √ | 556.0 | * | Glucose/complex/microaerbic | [ | |||
SR8 | √ | √ | 2 600.0 | * | xylose/defined/aerobic | [ | ||||
BY4742 | √ | √ | √ | 92.9 | * | xylose/defined/aerobic | [ |
表1 酿酒酵母工程菌株生产异丁醇的代表性实例
Table 1 Representative examples of isobutanol production by engineered S. cerevisiae
Strain background | Pathway localization | Cofactor-balance | Overexpressing isobutanol synthesis pathway | Block isobutanol competing pathway | Transcription factor regulation | Improved isobutanol tolerance | Isobutanol titer /(mg·L-1) | Isobutanol yield/ (mg·g-1 carbon source) | Carbon source/Medium properties/Fermentation conditions | Reference |
---|---|---|---|---|---|---|---|---|---|---|
YPH499 | √ | √ | 143.0 | 6.6 | Glucose/defined/microaerbic | [ | ||||
CEN.PK2-1C | √ | √ | √ | 376.9 | * | Glucose/defined/aerobic | [ | |||
YPH499 | √ | √ | √ | 224.0 | 12.0 | Glucose/defined/aerobic | [ | |||
CEN.PK2-1C | √ | √ | 330.9 | * | Glucose/defined/aerobic | [ | ||||
CEN.PK2-1C | √ | √ | √ | √ | 1 245.0 | 12.5 | Glucose/defined/aerobic | [ | ||
D452-2 | √ | √ | √ | 662.0 | 6.7 | Glucose/defined/microaerbic | [ | |||
CEN.PK113-7D | √ | √ | 2 090.0 | 59.6 | Glucose/defined/aerobic | [ | ||||
CEN.PK2-1C | √ | √ | √ | 263.2 | * | Glucose/defined/aerobic | [ | |||
CEN.PK113-5D | √ | √ | 190.0 | * | Glucose/defined/anaerobic | [ | ||||
D452-2 | √ | √ | 151.0 | * | Glucose/complex/microaerbic | [ | ||||
W303-1A | √ | √ | 404.0 | 10.1 | Glucose/complex/microaerbic | [ | ||||
W303-1A | √ | √ | √ | 556.0 | * | Glucose/complex/microaerbic | [ | |||
SR8 | √ | √ | 2 600.0 | * | xylose/defined/aerobic | [ | ||||
BY4742 | √ | √ | √ | 92.9 | * | xylose/defined/aerobic | [ |
[1] | Zörgö E, Chwialkowska K, Gjuvsland AB, et al. Ancient evolutionary trade-offs between yeast ploidy states[J]. PLoS Genet, 2013, 9(3): e1003388. |
[2] | 田宇, 王义强, 王启业. 异丁醇生物合成的研究进展[J]. 生物技术通报, 2013(5): 40-44. |
Tian Y, Wang YQ, Wang QY. Research progress of isobutanol biosynthesis[J]. Biotechnol Bull, 2013(5): 40-44. | |
[3] |
Lakshmi NM, Binod P, Sindhu R, et al. Microbial engineering for the production of isobutanol: current status and future directions[J]. Bioengineered, 2021, 12(2): 12308-12321.
doi: 10.1080/21655979.2021.1978189 pmid: 34927549 |
[4] |
Promdonkoy P, Mhuantong W, Champreda V, et al. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering[J]. J Ind Microbiol Biotechnol, 2020, 47(6/7): 497-510.
doi: 10.1007/s10295-020-02281-9 URL |
[5] |
Eden A, Van Nedervelde L, Drukker M, et al. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast[J]. Appl Microbiol Biotechnol, 2001, 55(3): 296-300.
pmid: 11341309 |
[6] | Chen ECH. The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols[J]. J Am Soc Brew Chem, 1978, 36(1): 39-43. |
[7] |
Kłosowski G, Mikulski D, Macko D, et al. Influence of various yeast strains and selected starchy raw materials on production of higher alcohols during the alcoholic fermentation process[J]. Eur Food Res Technol, 2015, 240(1): 233-242.
doi: 10.1007/s00217-014-2323-8 URL |
[8] |
Larroy C, Fernández MR, González E, et al. Characterization of the Saccharomyces cerevisiae YMR318C(ADH6)gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction[J]. Biochem J, 2002, 361(Pt 1): 163-172.
doi: 10.1042/0264-6021:3610163 pmid: 11742541 |
[9] | 李杨, 张爱利, 高玉菡, 等. 酿酒酵母菌中过量表达BAT2和缺失PDC6提高异丁醇产率[J]. 中国科技论文, 2015, 10(12): 1443-1449. |
Li Y, Zhang AL, Gao YH, et al. Overexpression of BAT2 and deletion of PDC6 to increase isobutanol in Saccharomyces cerevisiae[J]. China Sci, 2015, 10(12): 1443-1449. | |
[10] |
Funovics M, Montet X, Reynolds F, et al. Nanoparticles for the optical imaging of tumor selectin[J]. Neoplasia, 2005, 7(10): 904-911.
pmid: 16242073 |
[11] |
Lane S, Zhang YF, Yun EJ, et al. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2020, 117(2): 372-381.
doi: 10.1002/bit.v117.2 URL |
[12] |
Generoso WC, Schadeweg V, Oreb M, et al. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers[J]. Curr Opin Biotechnol, 2015, 33: 1-7.
doi: 10.1016/j.copbio.2014.09.004 URL |
[13] | 冯鹏鹏, 孙丽静, 肖冬光, 等. 啤酒酵母高级醇的代谢与调控研究进展[J]. 食品研究与开发, 2021, 42(8): 153-159. |
Feng PP, Sun LJ, Xiao DG, et al. Research progress on metabolism and regulation of higher alcohols in beer yeast[J]. Food Res Dev, 2021, 42(8): 153-159. | |
[14] |
Chen X, Nielsen KF, Borodina I, et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism[J]. Biotechnol Biofuels, 2011, 4: 21.
doi: 10.1186/1754-6834-4-21 URL |
[15] |
Kondo T, Tezuka H, Ishii J, et al. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae[J]. J Biotechnol, 2012, 159(1/2): 32-37.
doi: 10.1016/j.jbiotec.2012.01.022 URL |
[16] |
González E, Fernández MR, Marco D, et al. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2, 3-butanediol[J]. Appl Environ Microbiol, 2010, 76(3): 670-679.
doi: 10.1128/AEM.01521-09 URL |
[17] |
Li P, Guo XW, Shi TT, et al. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum[J]. J Ind Microbiol Biotechnol, 2017, 44(11): 1541-1550.
doi: 10.1007/s10295-017-1976-2 URL |
[18] |
White WH, Gunyuzlu PL, Toyn JH. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine[J]. J Biol Chem, 2001, 276(14): 10794-10800.
doi: 10.1074/jbc.M009804200 pmid: 11154694 |
[19] |
Wess J, Brinek M, Boles E. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation[J]. Biotechnol Biofuels, 2019, 12: 173.
doi: 10.1186/s13068-019-1486-8 |
[20] |
Ida K, Ishii J, Matsuda F, et al. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae[J]. Microb Cell Fact, 2015, 14: 62.
doi: 10.1186/s12934-015-0240-6 URL |
[21] |
Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans[J]. Science, 2012, 337(6090): 96-100.
doi: 10.1126/science.1218099 pmid: 22628558 |
[22] |
Lee KM, Kim SK, Lee YG, et al. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae[J]. Bioresour Technol, 2018, 268: 271-277.
doi: 10.1016/j.biortech.2018.07.150 URL |
[23] |
Holmberg S, Litske Petersen JG. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae[J]. Curr Genet, 1988, 13(3): 207-217.
pmid: 3289762 |
[24] | Tavoulari S, Thangaratnarajah C, Mavridou V, et al. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state[J]. EMBO J, 2019, 38(10): e100785. |
[25] |
Park SH, Kim S, Hahn JS. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier[J]. Appl Microbiol Biotechnol, 2016, 100(17): 7591-7598.
doi: 10.1007/s00253-016-7636-z URL |
[26] | 高玉菡, 李敬知, 张爱利. 酿酒酵母的甘油和乙醇生物合成对异丁醇产率的影响[J]. 中国科技论文, 2015, 10(18): 2145-2151. |
Gao YH, Li JZ, Zhang AL. The effect of glycerol and ethanol biosynthesis on the yield of isobutanol in Saccharomyces cerevisiae[J]. China Sci, 2015, 10(18): 2145-2151. | |
[27] | Saint-Prix F, Bönquist L, Dequin S. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation[J]. Microbiology(Reading), 2004, 150(Pt 7): 2209-2220. |
[28] |
Milne N, Wahl SA, van Maris AJA, et al. Excessive by-product formation: a key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains[J]. Metab Eng Commun, 2016, 3: 39-51.
doi: 10.1016/j.meteno.2016.01.002 pmid: 29142820 |
[29] |
Park SH, Kim S, Hahn JS. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol[J]. Appl Microbiol Biotechnol, 2014, 98(21): 9139-9147.
doi: 10.1007/s00253-014-6081-0 URL |
[30] | 李敬知, 冯瑞琪, 张爱利. 过量表达酿酒酵母ZWF1基因对异丁醇产量的影响[J]. 中国科技论文, 2017, 12(6): 607-613. |
Li JZ, Feng RQ, Zhang AL. Effect of ZWF1 gene overexpression in Saccharomyces cerevisiae on the production of isobutanol[J]. China Sci, 2017, 12(6): 607-613. | |
[31] |
Gambacorta FV, Wagner ER, Jacobson TB, et al. Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway[J]. Synth Syst Biotechnol, 2022, 7(2): 738-749.
doi: 10.1016/j.synbio.2022.02.007 pmid: 35387233 |
[32] |
Tan SZ, Manchester S, Prather KLJ. Controlling central carbon metabolism for improved pathway yields in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2016, 5(2): 116-124.
doi: 10.1021/acssynbio.5b00164 URL |
[33] |
Park SH, Hahn JS. Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of α-acetolactate[J]. Sci Rep, 2019, 9(1): 3996.
doi: 10.1038/s41598-019-40631-5 |
[34] |
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J]. Nat Biotechnol, 2013, 31(4): 335-341.
doi: 10.1038/nbt.2509 pmid: 23417095 |
[35] |
Lee WH, Seo SO, Bae YH, et al. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes[J]. Bioprocess Biosyst Eng, 2012, 35(9): 1467-1475.
doi: 10.1007/s00449-012-0736-y URL |
[36] |
Outten CE, Albetel AN. Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details[J]. Curr Opin Microbiol, 2013, 16(6): 662-668.
doi: 10.1016/j.mib.2013.07.020 pmid: 23962819 |
[37] |
Camire EJ, Grossman JD, Thole GJ, et al. The yeast Nbp35-Cfd1 cytosolic iron-sulfur cluster scaffold is an ATPase[J]. J Biol Chem, 2015, 290(39): 23793-23802.
doi: 10.1074/jbc.M115.667022 pmid: 26195633 |
[38] |
Martínez-Pastor MT, Perea-García A, Puig S. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae[J]. World J Microbiol Biotechnol, 2017, 33(4): 75.
doi: 10.1007/s11274-017-2215-8 URL |
[39] |
Hammer SK, Avalos JL. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis[J]. Metab Eng, 2017, 44: 302-312.
doi: S1096-7176(17)30303-8 pmid: 29037781 |
[40] |
Deng C, Wu YK, Lv XQ, et al. Refactoring transcription factors for metabolic engineering[J]. Biotechnol Adv, 2022, 57: 107935.
doi: 10.1016/j.biotechadv.2022.107935 URL |
[41] |
Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase[J]. Biochemistry, 1999, 38(16): 5222-5231.
doi: 10.1021/bi983013m pmid: 10213630 |
[42] |
Lee K, Hahn JS. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharo-myces cerevisiae[J]. Mol Microbiol, 2013, 88(6): 1120-1134.
doi: 10.1111/mmi.2013.88.issue-6 URL |
[43] | Wang YP, Liu L, Wang XS, et al. GAT1 gene, the GATA transcription activator, regulates the production of higher alcohol during wheat beer fermentation by Saccharomyces cerevisiae[J]. Bioengineering(Basel), 2021, 8(5): 61. |
[44] |
Natarajan K, Meyer MR, Jackson BM, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast[J]. Mol Cell Biol, 2001, 21(13): 4347-4368.
doi: 10.1128/MCB.21.13.4347-4368.2001 pmid: 11390663 |
[45] |
Vallejo B, Orozco H, Picazo C, et al. Sch9p kinase and the Gcn4p transcription factor regulate glycerol production during winemaking[J]. FEMS Yeast Res, 2017, 17(1): 10.1093/femsyr/fow106
doi: 10.1093/femsyr/fow106 |
[46] |
Eder M, Sanchez I, Brice C, et al. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation[J]. BMC Genom, 2018, 19(1): 166.
doi: 10.1186/s12864-018-4562-8 |
[47] |
Zhang W, Shao W, Zhang A. Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15[J]. Lett Appl Microbiol, 2021, 73(6): 694-707.
doi: 10.1111/lam.v73.6 URL |
[48] | Su YD, Shao WJ, Zhang AL, et al. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2021, 21(2): foab012. |
[49] | 温智慧, 李敬知, 冯瑞琪, 等. EMS诱变高异丁醇耐受性酿酒酵母的筛选[J]. 中国酿造, 2018, 37(10): 66-71. |
Wen ZH, Feng RQ, Su YD, et al. Screening of Saccharomyces cerevisiae with high isobutanol tolerance by EMS mutagenesis[J]. China Brew, 2018, 37(10): 66-71. | |
[50] | 邵文举, 鲁尚昆, 张爱利. 酿酒酵母SRP40基因对细胞耐受性影响的研究[J]. 微生物学报, 2022, 62(3): 1150-1165. |
Shao WJ, Lu SK, Zhang AL. Effect of SRP40 gene on cell tolerance of Saccharomyces cerevisiae[J]. Acta Microbiol Sin, 2022, 62(3): 1150-1165. | |
[51] |
Ha GS, Saha S, Basak B, et al. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels[J]. Bioresour Technol, 2021, 340: 125651.
doi: 10.1016/j.biortech.2021.125651 URL |
[52] |
El-Dalatony MM, Saha S, Govindwar SP, et al. Biological conversion of amino acids to higher alcohols[J]. Trends Biotechnol, 2019, 37(8): 855-869.
doi: S0167-7799(19)30023-X pmid: 30871798 |
[53] |
Hammer SK, Avalos JL. Harnessing yeast organelles for metabolic engineering[J]. Nat Chem Biol, 2017, 13(8): 823-832.
doi: 10.1038/nchembio.2429 pmid: 28853733 |
[54] |
Das M, Patra P, Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels[J]. Renew Sustain Energy Rev, 2020, 119: 109562.
doi: 10.1016/j.rser.2019.109562 URL |
[55] |
Boudaoud S, Aouf C, Devillers H, et al. Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation[J]. Food Microbiol, 2021, 98: 103790.
doi: 10.1016/j.fm.2021.103790 URL |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[3] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[4] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[5] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[6] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[7] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[8] | 段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. |
[9] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[10] | 郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296. |
[11] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[12] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[13] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[14] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[15] | 马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3): 153-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||