[1] You KO, Hwang KR, Kim C, et al.Recent developments and key barriers to advanced biofuels:A short review[J]. Bioresource Technology, 2018, 257:320-333. [2] 刘登, 刘均洪. 基因工程技术在生物燃料领域的应用进展[J]. 现代化工, 2019, 39(11):29-34. Liu D, Liu JH.Progress in application of genetic engineering technology in biofuels field[J]. Modern Chemical Industry, 2019, 39(11):29-34. [3] Akram F, Haq IU, Imran W, et al.Insight perspectives of thermostable endoglucanases for bioethanol production:A review[J]. Renewable Energy, 2018, 122:225-238. [4] Kuhad RC, Deswal D, Sharma S, et al.Revisiting cellulase production and redefining current strategies based on major challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 55:249-272. [5] Elsayed M, Abomohra AF, Ai P, et al.Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production:Comparison of structural properties and energy output[J]. Bioresource Technology, 2018, 268:183-189. [6] Bilal M, Hafiz MN, Hu HB, et al.Metabolic engineering and enzyme-mediated processing:A biotechnological venture towards biofuel production-A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82(1):436-447. [7] Donato PD, Ilaria Finore L, Poli A, et al.The production of second generation bioethanol:The biotechnology potential of thermophilic bacteria[J]. Journal of Cleaner Production, 2019, 233:1410-1417. [8] Kaushal G, Kumar J, Sangwan RS, et al.Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes[J]. International Journal of Biological Macromolecules, 2018, 119:882-895. [9] Ariaeenejad S, Maleki M, Hosseini E, et al.Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion[J]. Bioresource Technology, 2019, 281:343-350. [10] Sindhu R, Binod P, Pandey A, Biological pretreatment of lignocellulosic biomass-An overview[J]. Bioresource Technology, 2016, 199:76-82. [11] Patel AK, Singhania RR, Sim SJ, et al.Thermostable cellulases:Current status and perspectives[J]. Bioresource Technology, 2019, 279:385-392. [12] Ebaid R, Wang HC, Sha C, et al.Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry:A critical review[J]. Journal of Cleaner Production, 2019, 238:117925. [13] Stevens JC, Shi J.Biocatalysis in ionic liquids for lignin valorization:Opportunities and recent developments[J]. Biotechnology Advances, 2019:37(8):107418. [14] Han HW, Ling ZM, Khan A, et al.Improvements of thermophilic enzymes:From genetic modifications to applications[J]. Bioresource Technology, 2019, 279:350-361. [15] Veluchamy C, Kalamdhad AS.Enhancement of hydrolysis of lignocellulose waste pulp and paper mill sludge through different heating processes on thermal pretreatment[J]. Journal of Cleaner Production, 2017, 168:219-226. [16] Saurabh S, Kumar JD, Nallusamy S, et al.Developing efficient thermophilic cellulose degrading consortium for glucose production from different agro-residues[J]. Frontiers in Energy Research, 2019, 7:61. [17] Aikawa S, Baramee S, Sermsathanaswadi J, et al.Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium[J]. Systematic and Applied Microbiology, 2018, 41(4):261-269. [18] Tan H, Miao R, Liu T, et al.A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle[J]. Microbial Biotechnology, 2018, 11(2):381-398. [19] Shahi S, Tajwar R, Akhtar MW, A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities[J]. Extremophiles, 2018, 22:109-119. [20] Ariaeenejad S, Maleki M, Hosseini E, et al.Mining of camel rumen metagenome to identify novel alkali-thermostable xylanase capable of enhancing the recalcitrant lignocellulosic biomass conversion[J]. Bioresource Technology, 2019, 281:343-350. [21] Krüger A, Schäfers C, Schröder C, et al.Towards a sustainable biobased industry - Highlighting the impact of extremophiles[J]. New Biotechnology, 2018, 40(A):144-153. [22] Brogan APS, Le LB, Hallett JP.Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase[J]. Nature Chemistry, 2018, 10:859-865. [23] Darby JF, Atobe M, Firth JD, et al.Increase of enzyme activity through specific covalent modification with fragments[J]. Chemical Science, 2017, 8(11):7772-7779. [24] Boonyapakron K, Jaruwat A, Liwnaree B, et al.Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1, 4-xylanase for applications in pulp bleaching[J]. Journal of Biotechnology, 2017, 259:95-102. [25] Tajwar R, Shahid S, Zafar R, et al.Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB[J]. Enzyme and Microbial Technology, 2017, 106:75-82. [26] Fernández-Fernández M, Moldes D, Domínguez A, et al.Stability and kinetic behavior of immobilized laccase from Myceliophthora thermophila in the presence of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate[J]. Biotechnolgy Progress, 2014, 30(4):790-796. [27] Gupta SMN, Bisaria VS.Effectiveness of cross-linked enzyme aggregates of cellulolytic enzymes in hydrolyzing wheat straw[J]. Journal of Bioscience and Bioengineering, 2018, 126(4):445-450. [28] Periyasamy K, Santhalembi L, Mortha G, et al.Carrier-free co-immobilization of xylanase, cellulase and β-1, 3-glucanase as combined cross-linked enzyme aggregates(combi-CLEAs)for one-pot saccharification of sugarcane bagasse[J]. RSC Advances, 2016, 6:32849-32857. [29] Jia J, Zhang W, Yang Z, et al.Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion[J]. Molecules, 2017, 22:269. [30] Benedetti M, Vecchi V, Betterle N, et al.Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass[J]. Journal of Biotechnology, 2019, 296:42-52. [31] Haq LU, Akram F.Insight into kinetics and thermodynamics of a novel hyperstable GH family 10 endo-1, 4-β-xylanase(TnXynB)with broad substrates specificity cloned from Thermotoga naphthophilaRKU-10T[J]. Enzyme and Microbial Technology, 2019, 127:32-42. [32] Han C, Li WG, Hua CY, et al.Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis[J]. International Journal of Biological Macromolecules, 2018, 116:691-697. [33] Mir BA, Mewalal R, Mizrachi E, et al.Recombinant hyperthermophilic enzyme expression in plants:a novel approach for lignocellulose digestion[J]. Trends in Biotechnology, 2014, 32(5):281-289. [34] Mir BA, Myburg AA, Mizrachi E, et al.In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion[J]. Scientific Reports, 2017, 7(1):11462. [35] Castiglia D, Sannino L, Marcolongo L, et al.High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass[J]. Biotechnology for Biofuels, 2016, 9(1):154. [36] Xiao Y, He X, Ojeda-Lassalle Y, et al.Expression of a hyperthermophilic endoglucanase in hybrid poplar modifies the plant cell wall and enhances digestibility[J]. Biotechnol Biofuels, 2018, 11:225. [37] Kubicek CP.Systems biological approaches towards understanding cellulase production by Trichoderma reesei[J]. Journal of Biotechnology, 2013, 163(2):133-142. [38] Aghcheh RK, Németh Z, Atanasova L, et al.The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression[J]. PLoS One, 2014, 9(11):e112799. [39] Zhang F, Zhao XQ, Bai FW.Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1[J]. Bioresource Technology, 2018, 247:676-683. [40] Sun Y, Wang H, Ma K, et al.Construction and characterization of the GFAT gene as a novel selection marker in Aspergillus nidulans[J]. Applied Microbiology and Biotechnology, 2018, 102(18):7951-7962. [41] Jain KK, Kumar A, Shankar A, et al.De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways[J]. Genomics, 2020, 112(1):184-198. [42] Han HW, Ling ZM, Khan A, et al.Improvements of thermophilic enzymes:From genetic modifications to applications[J]. Bioresource Technology, 2019, 279:350-361. [43] Usai G, Cirrincione S, Re A, et al.Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach[J]. Journal of Proteomics, 2020, 216:103667. [44] Aulitto M, Fusco FA, Fiorentino G, et al.A thermophilic enzymatic cocktail for galactomannans degradation[J]. Enzyme and Microbial Technology, 2018, 111:7-11. [45] Zhou HC, Li T, Yu ZC, et al.A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis[J]. International Journal of Biological Macromolecules, 2019, 139:570-576. [46] Zhuo R, Yu HB, Qin X, et al.Heterologous expression and characterization of a xylanase and xylosidase from white rot fungi and their application in synergistic hydrolysis of lignocellulose[J]. Chemosphere, 2018, 212:24-33. [47] Ding DY, Li PY, Zhang XM, et al.Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis[J]. Bioresource Technology, 2019, 273:231-236. |