生物技术通报 ›› 2020, Vol. 36 ›› Issue (7): 235-244.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1115
余韩洁钰, 朱丽叶, 陈旭, 贺晓云, 许文涛
收稿日期:
2019-11-15
出版日期:
2020-07-26
发布日期:
2020-07-28
作者简介:
余韩洁钰,女,硕士研究生,研究方向:功能核酸;E-mail:yuhanjieyu@163.com
基金资助:
YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao
Received:
2019-11-15
Published:
2020-07-26
Online:
2020-07-28
摘要: 细胞特异性核酸适配体作为一个细胞表面信息的识别分子受到了广泛关注,其筛选有别于普通的小分子和大分子,在筛选过程中细胞活力的保持,死细胞干扰的去除及最终适配体运用的可行性等都较为重要。细胞适配体的筛选始终是研究的一个重点,基于细胞表面标志物、全细胞、组织和体内几个方面来揭示其筛选方式,同时将筛选出的适配体从亲和力、特异性、细胞活力、临床组织和体内可行性几个方面进行评价,以期为细胞适配体的筛选和评价方式提供一定参考。
余韩洁钰, 朱丽叶, 陈旭, 贺晓云, 许文涛. 细胞特异性核酸适配体的筛选及评价策略[J]. 生物技术通报, 2020, 36(7): 235-244.
YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao. Screening and Evaluation Strategies of Cell-specific Nucleic Acid Aptamers[J]. Biotechnology Bulletin, 2020, 36(7): 235-244.
[1] Ruigrok VJ, Levisson M, Eppink MH, et al.Alternative affinity tools:More attractive than antibodies?[J]. The Biochemical Journal, 2011, 436(1):1-13. [2] Jayasena SD.Aptamers:An emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9):1628-1650. [3] Beck A, Wurch T, Bailly C, et al.Strategies and challenges for the next generation of therapeutic antibodies[J]. Nature Reviews Immunology, 2010, 10(5):345-352. [4] Ge Y, Turner AP.Too large to fit? Recent developments in macromolecular imprinting[J]. Trends in Biotechnology, 2008, 26(4):218-224. [5] Ellington AD, Szostak JW.In vitro selection of rna molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [6] Tuerk C, Gold L.Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510. [7] Darmostuk M, Rimpelova S, Gbelcova H, et al.Current approaches in SELEX:An update to aptamer selection technology[J]. Biotechnology Advances, 2015, 33(6):1141-1161. [8] Ye M, Hu J, Peng M, et al.Generating aptamers by Cell-SELEX for applications in molecular medicine[J]. International Journal of Molecular Sciences, 2012, 13(3):3341-3353. [9] Banerjee J, Nilsen-Hamilton M.Aptamers:Multifunctional molecules for biomedical research[J]. Journal of Molecular Medicine, 2013, 91(12):1333-1342. [10] Cai S, Yan J, Xiong H, et al.Investigations on the interface of nucleic acid aptamers and binding targets[J]. Analyst, 2018, 143(22):5317-5338. [11] Li W, Wang S, Zhou L, et al.An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue[J]. Talanta, 2019, 199:634-642. [12] Yuan B, Jiang X, Chen Y, et al.Metastatic cancer cell and tissue-specific fluorescence imaging using a new DNA aptamer developed by Cell-SELEX[J]. Talanta, 2017, 170:56-62. [13] Li F, Lu J, Liu J, et al.A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer[J]. Nature Communications, 2017, 8(1):1390. [14] Pusuluri A, Krishnan V, Lensch V, et al.Treating tumors at low drug doses using an aptamer-peptide synergistic drug conjugate[J]. Angewandte Chemie International Edition, 2019, 58(5):1437-1441. [15] Zhao N, Pei SN, Qi J, et al.Oligonucleotide aptamer-drug conjug-ates for targeted therapy of acute myeloid leukemia[J]. Biomate-rials, 2015, 67:42-51. [16] Yang S, Wen J, Li H, et al.Aptamer-engineered natural killer cells for cell-specific adaptive immunotherapy[J]. Small, 2019, 15(22):e1900903. [17] Berezovski M, Musheev M, Drabovich A, et al.Non-SELEX selection of aptamers[J]. Journal of the American Chemical Society, 2006, 128(5):1410-1411. [18] Homann M, Göringer HU.Combinatorial selection of high affinity RNA ligands to live African trypanosomes[J]. Nucleic Acids Research, 1999, 27(9):2006-2014. [19] Daniels DA, Chen H, Hicke BJ, et al.A tenascin-C aptamer identified by tumor cell SELEX:Systematic evolution of ligands by exponential enrichment[J]. Proceedings of the National Academy of Sciences, 2003, 100(26):15416-15421. [20] Liu M, Yang T, Chen Z, et al.Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells[J]. Biomaterials Science, 2018, 6(12):3152-3159. [21] Tang Z, Parekh P, Turner P, et al.Generating aptamers for recognition of virus-infected cells[J]. Clinical Chemistry, 2009, 55(4):813-822. [22] Liu J, Liu H, Sefah K, et al.Selection of aptamers specific for adipose tissue[J]. PLoS One, 2012, 7(5):e37789. [23] Moreno MM, González VM.Advances on aptamers targeting plasmodium and trypanosomatids[J]. Current Medicinal Chemistry, 2011, 18(32):5003-5010. [24] Davis KA, Abrams B, Lin Y, et al.Staining of cell surface human CD4 with 2'-f-pyrimidine-containing rna aptamers for flow cytometry[J]. Nucleic Acids Research, 1998, 26(17):3915-3924. [25] Hu Y, Duan J, Zhan Q, et al.Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro[J]. PLoS One, 2012, 7(2):e31970. [26] Burchell JM, Mungul A, Taylor-Papadimitriou J.O-linked glycosylation in the mammary gland:Changes that occur during malignancy[J]. Journal of Mammary Gland Biology and Neoplasia, 2001, 6(3):355-364. [27] Morris KN, Jensen KB, Julin CM, et al.High affinity ligands from in vitro selection:Complex targets[J]. Proceedings of the National Academy of Sciences, 1998, 95(6):2902-2907. [28] Ababneh N, Alshaer W, Allozi O, et al.In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker[J]. Nucleic Acid Therapeutics, 2013, 23(6):401-407. [29] Elle IC, Karlsen KK, Terp MG, et al.Selection of LNA-containing DNA aptamers against recombinant human CD73[J]. Molecular BioSystems, 2015, 11(5):1260-1270. [30] Mallikaratchy P.Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens[J]. Molecules, 2017, 22(2):215. [31] Kaur H.Recent developments in cell-SELEX technology for aptamer selection[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2018, 1862(10):2323-2329. [32] Ohuchi SP, Ohtsu T, Nakamura Y.Selection of RNA aptamers against recombinant transforming growth factor-β type Ⅲ receptor displayed on cell surface[J]. Biochimie, 2006, 88(7):897-904. [33] Kim JW, Kim EY, Kim SY, et al.Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX[J]. Molecules and Cells, 2014, 37(10):742-746. [34] Raddatz MSL, Dolf A, Endl E, et al.Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting[J]. Angew Chem Int Edi Engl, 2008, 47(28):5190-5193. [35] Kim EY, Kim JW, Kim WK, et al.Selection of aptamers for mature white adipocytes by cell SELEX using flow cytometry[J]. PLoS One, 2014, 9(5):e97747. [36] Avci-Adali M, Metzger M, Perle N, et al.Pitfalls of cell-systematic evolution of ligands by exponential enrichment(SELEX):Existing dead cells during in vitro selection anticipate the enrichment of specific aptamers[J]. Oligonucleotides, 2010, 20(6):317-323. [37] Hicke BJ, Marion C, Chang YF, et al.Tenascin-C aptamers are generated using tumor cells and purified protein[J]. Journal of Biological Chemistry, 2001, 276(52):48644-48654. [38] Zumrut HE, Ara MN, Fraile M, et al.Ligand-guided selection of target-specific aptamers:A screening technology for identifying specific aptamers against cell-surface proteins[J]. Nucleic Acid Therapeutics, 2016, 26(3):190-198. [39] Thiel WH, Bair T, Peek AS, et al.Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection[J]. PLoS One, 2012, 7(9):e43836. [40] Souza GR, Molina JR, Raphael RM, et al.Three-dimensional tissue culture based on magnetic cell levitation[J]. Nature Nanotechnology, 2010, 5(4):291-296. [41] Souza AG, Marangoni K, Fujimura PT, et al.3D cell-selex:Development of rna aptamers as molecular probes for PC-3 tumor cell line[J]. Exp Cell Res, 2016, 341(2):147-156. [42] Wang C, Zhang M, Yang G, et al.Single-stranded DNA aptamers that bind differentiated but not parental cells:Subtractive systematic evolution of ligands by exponential enrichment[J]. Journal of Biotechnology, 2003, 102(1):15-22. [43] Tan Y, Guo Q, Xie Q, et al.Single-walled carbon nanotubes(SWCNTs)-assisted cell-systematic evolution of ligands by exponential enrichment(cell-SELEX)for improving screening efficiency[J]. Analytical Chemistry, 2014, 86(19):9466-9472. [44] Bruno JG.In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection[J]. Biochemical and Biophysical Research Communications, 1997, 234(1):117-120. [45] Stoltenburg R, Reinemann C, Strehlitz B.FluMag-SELEX as an advantageous method for DNA aptamer selection[J]. Analytical and Bioanalytical Chemistry, 2005, 383(1):83-91. [46] Stoltenburg R, Nikolaus N, Strehlitz B.Capture-selex:Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012. doi:10.1155/2012/415697. [47] Gopinathan P, Hung LY, Wang CH, et al.Automated selection of aptamers against cholangiocarcinoma cells on an integrated microfluidic platform[J]. Biomicrofluidics, 2017, 11(4):044101. [48] Zhu Z, Song Y, Li C, et al.Monoclonal surface display selex for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Analytical Chemistry, 2014, 86(12):5881-5888. [49] Li SH, Xu H, Ding HM, et al.Identification of an aptamer targeting hnrnp a1 by tissue slide-based selex[J]. J Pathol, 2009, 218(3):327-336. [50] Wang H, Zhang Y, Yang H, et al.In vivo selex of an inhibitory nsclc-specific rna aptamer from pegylated rna library[J]. Molecular Therapy-Nucleic Acids, 2018, 10:187-198. [51] Cheng C, Chen YH, Lennox KA, et al.In vivo selex for identification of brain-penetrating aptamers[J]. Molecular Therapy-Nucleic Acids, 2013, 2:e67. [52] Chen L, He W, Jiang H, et al.In vivo selex of bone targeting aptamer in prostate cancer bone metastasis model[J]. International Journal of Nanomedicine, 2019, 14:149-159. [53] Civit L, Theodorou I, Frey F, et al.Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model[J]. Scientific Reports, 2019, 9(1):4976. [54] Mi J, Ray P, Liu J, et al.In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9[J]. Molecular Therapy-Nucleic Acids, 2016, 5(4):e315. [55] Li WM, Bing T, Wei JY, et al.Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells[J]. Biomaterials, 2014, 35(25):6998-7007. [56] 黄旭方. 基于细胞SELEX技术的MMP14特异性适配体筛选及双模态分子探针的构建与初步功能研究[D]. 西安:中国人民解放军空军军医大学, 2018. [57] Aptekar S, Arora M, Lawrence CL, et al.Selective targeting to glioma with nucleic acid aptamers[J]. PLoS One, 2015, 10(8):e0134957. [58] Rosenberg JE, Bambury RM, Van Allen EM, et al.A phase Ⅱ trial of AS1411(a novel nucleolin-targeted DNA aptamer)in metastatic renal cell carcinoma[J]. Investigational New Drugs, 2014, 32(1):178-187. [59] Huang R, Chen Z, Liu M, et al.The aptamers generated from HepG2 cells[J]. Science China Chemistry, 2017, 60(6):786-792. [60] Wu X, Zhao Z, Bai H, et al.DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition[J]. Theranostics, 2015, 5(9):985-994. [61] Shangguan D, Li Y, Tang Z, et al.Aptamers evolved from live cells as effective molecular probes for cancer study[J]. Proceedings of the National Academy of Sciences, 2006, 103(32):11838-11843. [62] Huang YF, Shangguan D, Liu H, et al.Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells[J]. Chembiochem, 2009, 10(5):862-868. [63] Sefah K, Tang ZW, Shangguan DH, et al.Molecular recognition of acute myeloid leukemia using aptamers[J]. Leukemia Official Journal of the Leukemia Society of America Leukemia Research Fund U K, 2009, 23(2):235-244. [64] Bayrac AT, Sefah K, Parekh P, et al.In vitro selection of DNA aptamers to glioblastoma multiforme[J]. ACS Chemical Neuroscience, 2011, 2(3):175-181. [65] Chen H, Medley C, Sefah K, et al.Molecular recognition of small-cell lung cancer cells using aptamers[J]. Chemmedchem, 2008, 3(6):991-1001. [66] Zhao Z, Xu L, Shi X, et al.Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells[J]. Analyst, 2009, 134(9):1808-1814. [67] Van Simaeys D, López-Colón D, Sefah K, et al.Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX[J]. PLoS One, 2010, 5(11):e13770. [68] He J, Wang J, Zhang N, et al.In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX[J]. Talanta, 2019, 194:437-445. [69] Wang L, Li P, Xiao X, et al.Generating lung-metastatic osteosarcoma targeting aptamers for in vivo and clinical tissue imaging[J]. Talanta, 2018, 188:66-73. [70] Raddatz MS, Dolf A, Endl E, et al.Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting[J]. Angewandte Chemie International Edition, 2008, 47(28):5190-5193. [71] Graham JC, Zarbl H.Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells[J]. PLoS One, 2012, 7(4):e36103. [72] Ohuchi SP, Ohtsu T, Nakamura Y.Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface[J]. Biochimie, 2006, 88(7):897-904. [73] Shangguan D, Meng L, Cao ZC, et al.Identification of liver cancer-specific aptamers using whole live cells[J]. Analytical Chemistry, 2008, 80(3):721-728. [74] Blank M, Weinschenk T, Priemer M, et al.Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen[J]. Journal of Biological Chemistry, 2001, 276(19):16464-16468. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[3] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[4] | 刘浩, 马世杰, 周哲敏, 崔文璟. 杰氏棒杆菌L-天冬氨酸α脱羧酶半理性改造及全细胞催化合成β-丙氨酸[J]. 生物技术通报, 2023, 39(9): 281-290. |
[5] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[6] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[7] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[8] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[9] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[10] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[11] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[12] | 杜冬冬, 钱晶, 李思琪, 刘雯菲, 魏向利, 刘长勇, 罗瑞峰, 康立超. 单核细胞增生李斯特菌LMXJ15全基因组测序及分析[J]. 生物技术通报, 2023, 39(7): 298-306. |
[13] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[14] | 周文汉, 郑康宁, 李永民. 瑞香狼毒降低YAP1表达抑制肝癌细胞增殖的作用[J]. 生物技术通报, 2023, 39(7): 316-324. |
[15] | 吴昊, 刘紫微, 郑颖, 戴雅文, 时权. 单细胞水平解析人牙龈间充质干细胞异质性[J]. 生物技术通报, 2023, 39(7): 325-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||