生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 3-13.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0978
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
程赛赛, 龚鑫, 薛文凤, 万兵兵, 刘满强, 胡锋
收稿日期:
2020-08-05
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
程赛赛,男,博士研究生,研究方向:植物-微生物组互作;E-mail:chss1992@163.com
基金资助:
CHENG Sai-sai, GONG Xin, XUE Wen-feng, WAN Bing-bing, LIU Man-qiang, HU Feng
Received:
2020-08-05
Published:
2020-09-26
Online:
2020-09-30
摘要: 植物表面和内部组织中的微生物在植物的生长、发育、适应和多样性中发挥着至关重要的作用。大量研究证实了植物相关微生物组的巨大功能潜力,但尚不清楚植物相关微生物组是如何在植物进化过程中构建的。从植物系统发育、作物驯化中植物-微生物组进化轨迹,以及宿主约束下微生物之间互作进化的研究进展入手,概述了植物及其微生物组的生态适应和进化机制。了解植物-微生物组相互作用的进化驱动因素,有利于恢复植物与微生物原始的有益协作关系,从而达到提高作物养分吸收、产量和品质等高产高效目标。强调未来通过分子生物学和作物基因组学相结合的策略,将是调控植物微生物组以促进农业可持续发展的关键,同时,对植物-微生物组互作的生态进化研究方向进行了展望。
程赛赛, 龚鑫, 薛文凤, 万兵兵, 刘满强, 胡锋. 生态进化视角的植物-微生物组互作研究进展[J]. 生物技术通报, 2020, 36(9): 3-13.
CHENG Sai-sai, GONG Xin, XUE Wen-feng, WAN Bing-bing, LIU Man-qiang, HU Feng. Plant-Microbiome Interactions:An Eco-Evolutionary Perspective[J]. Biotechnology Bulletin, 2020, 36(9): 3-13.
[1] Field KJ, Pressel S, Duckett JG, et al.Symbiotic options for the conquest of land[J]. Trends in Ecology & Evolution, 2015, 30(8):477-486. [2] Zilber-Rosenberg I, Rosenberg E.Role of microorganisms in the evolution of animals and plants:the hologenome theory of evolution[J]. FEMS Microbiol Rev, 2008, 32(5):723-735. [3] Lugtenberg B, Kamilova F.Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63(1):541-556. [4] 孙真, 郑亮, 邱浩斌. 植物根际促生细菌定殖研究进展[J]. 生物技术通报, 2017, 33(2):8-15. Sun Z, Zhen L, Qiu HB.Research advances on colonization of plant growth-promoting rhizobacteria[J]. Biotechnology Bulletin, 2017, 33(2):8-15. [5] Verbon EH, Liberman LM.Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends Plant Sci, 2016, 21(3):218-229. [6] Berendsen RL, Pieterse CM, Bakker PA.The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486. [7] Liu H, Brettell LE, Qiu Z, et al.Microbiome-mediated stress resistance in plants[J]. Trends Plant Sci, 2020, 25(8):733-743. [8] 姜焕焕, 王通, 陈娜, 等. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2019, 35(10):189-197. Jiang HH, Wang T, Chen N, et al.Research progress in PGPR improving plant’s resistance to salt and alkali[J]. Biotechnology Bulletin, 2019, 35(10):189-197. [9] Mendes R, Garbeva P, Raaijmakers JM.The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5):634-663. [10] 王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2):54-65. Wang D, Yao XM, Ye J.Research progress on multipartite interactions among rhizosphere microbe-plants-virus-vector insect[J]. Biotechnology Bulletin, 2018, 34(2):54-65. [11] Schlaeppi K, Bulgarelli D.The plant microbiome at work[J]. Mol Plant Microbe Interact, 2015, 28(3):212-217. [12] Hacquard S, Garrido-Oter R, Gonzalez A, et al.Microbiota and Host Nutrition across Plant and Animal Kingdoms[J]. Cell Host Microbe, 2015, 17(5):603-616. [13] Fitzpatrick CR, Copeland J, Wang PW, et al.Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proc Natl Acad Sci USA, 2018, 115(6):1157-1165. [14] Gordon J, Youle M, Knowlton N, et al.Superorganisms and Holobionts[J]. Microbe, 2013, 8(4):152-153. [15] Sasse J, Martinoia E, Northen T.Feed your friends:do plant exudates shape the root microbiome?[J]. Trends Plant Sci, 2018, 23(1):25-41. [16] Foster KR, Schluter J, Coyte KZ, et al.The evolution of the host microbiome as an ecosystem on a leash[J]. Nature, 2017, 548(7665):43-51. [17] Panke-Buisse K, Poole AC, Goodrich JK, et al.Selection on soil microbiomes reveals reproducible impacts on plant function[J]. The ISME Journal, 2015, 9(4):980-989. [18] 焦健, 田长富. 根瘤菌共生固氮能力的进化模式[J]. 微生物学通报, 2019, 46(2):388-397. Jiao J, Tian CF.Evolution of rhizobial nodulation and nitrogen fixation[J]. Microbiology, 2019, 46(2):388-397. [19] Gilbert GS, Parker IM.The evolutionary ecology of plant disease:a phylogenetic perspective[J]. Annu Rev Phytopathol, 2016, 54:549-578. [20] Bouffaud ML, Poirier MA, Muller D, et al.Root microbiome relates to plant host evolution in maize and other Poaceae[J]. Environ Microbiol, 2014, 16(9):2804-2814. [21] Yang T, Tedersoo L, Soltis PS, et al.Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China[J]. The ISME Journal, 2019, 13(3):686-697. [22] Gilbert GS, Webb CO.Phylogenetic signal in plant pathogen-host range[J]. Proc Natl Acad Sci USA, 2007, 104(12):4979-4983. [23] Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, et al.Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence[J]. Nature Communications, 2017, 8(1):1-9. [24] Naylor D, DeGraaf S, Purdom E, et al. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal, 2017, 11(12):2691-2704. [25] Escudero-Martinez C, Bulgarelli D.Tracing the evolutionary routes of plant-microbiota interactions[J]. Curr Opin Microbiol, 2019, 4934-4940. [26] Purugganan MD, Fuller DQ.The nature of selection during plant domestication[J]. Nature, 2009, 457(7231):843-848. [27] Milla R, Osborne CP, Turcotte MM, et al.Plant domestication through an ecological lens[J]. Trends in Ecology & Evolution, 2015, 30(8):463-469. [28] Wissuwa M, Mazzola M, Picard C.Novel approaches in plant breeding for rhizosphere-related traits[J]. Plant Soil, 2009, 321(1-2):409-430. [29] Vandenkoornhuyse P, Quaiser A, Duhamel M, et al.The importance of the microbiome of the plant holobiont[J]. New Phytol, 2015, 206(4):1196-1206. [30] Kiers ET, Denison RF.Inclusive fitness in agriculture[J]. Phil Trans R Soc B, 2014, 369(1642):20130367. [31] 常春玲, 马丽娜, 田春杰. 作物驯化对根际微生物组的选择效应[J]. 土壤与作物, 2018, 7(2):236-241. Chang CL, Ma LN, Tian CJ.A selecting effect of crop domestication on rhizomicrobiome[J]. Soil and Crop, 2018, 7(2):236-241. [32] Mutch LA, Young JP.Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes[J]. Molecular Ecology, 2004, 13(8):2435-2444. [33] Kiers ET, Hutton MG, Denison RF.Human selection and the relaxation of legume defences against ineffective rhizobia[J]. Phil Trans R Soc B, 2007, 274(1629):3119-3126. [34] Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, et al.Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake[J]. Biology and Fertility of Soils, 2013, 50(2):405-414. [35] Hetrick BAD, Wilson GWT, Gill BS, et al.Chromosome location of mycorrhizal responsive genes in wheat[J]. Canadian Journal of Botany, 1995, 73(6):891-897. [36] Zachow C, Muller H, Tilcher R, et al.Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets[J]. Front Microbiol, 2014, 5:415. [37] Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, et al.Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. New Phytol, 2016, 209 (2):798-811. [38] Bulgarelli D, Garrido-Oter R, Munch PC, et al.Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host Microbe, 2015, 17(3):392-403. [39] Perez-Jaramillo JE, Carrion VJ, Bosse M, et al.Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits[J]. The ISME Journal, 2017, 11(10):2244-2257. [40] Zancarini A, Mougel C, Voisin AS, et al.Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities[J]. Plos One, 2012, 7(10):e47096. [41] Verbruggen E, Toby Kiers E.Evolutionary ecology of mycorrhizal functional diversity in agricultural systems[J]. Evol Appl, 2010, 3(5-6):547-560. [42] Duhamel M, Vandenkoornhuyse P.Sustainable agriculture:possible trajectories from mutualistic symbiosis and plant neodomestication[J]. Trends Plant Sci, 2013, 18(11):597-600. [43] Weese DJ, Heath KD, Dentinger BT, et al.Long-term nitrogen addition causes the evolution of less-cooperative mutualists[J]. Evolution, 2015, 69(3):631-642. [44] Ramirez KS, Craine JM, Fierer N.Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6):1918-1927. [45] Perez-Jaramillo JE, Mendes R, Raaijmakers JM.Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Mol Biol, 2016, 90(6):635-644. [46] Cordovez V, Dini-Andreote F, Carrion VJ, et al.Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology, 2019, 7369-88. [47] Werner GDA, Cornelissen JHC, Cornwell WK, et al.Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown[J]. Proc Natl Acad Sci USA, 2018, 115(20):5229-5234. [48] Perez-Jaramillo JE, Carrion VJ, de Hollander M, et al. The wild side of plant microbiomes[J]. Microbiome, 2018, 6(1):143-148. [49] Chen L, Zheng Y, Gao C, et al.Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest[J]. Mol Ecol, 2017, 26(9):2563-2575. [50] Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, et al.Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi[J]. New Phytol, 2012, 196(3):835-844. [51] Hassani MA, Duran P, Hacquard S.Microbial interactions within the plant holobiont[J]. Microbiome, 2018, 6(1):58-74. [52] Chisholm ST, Coaker G, Day B, et al.Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814. [53] Benizri E, Nguyen C, Piutti S, et al.Additions of maize root mucilage to soil changed the structure of the bacterial community[J]. Soil Biology & Biochemistry, 2007, 39(5):1230-1233. [54] Gundel PE, Rudgers JA, Ghersa CM.Incorporating the process of vertical transmission into understanding of host-symbiont dynamics[J]. Oikos, 2011, 120(8):1121-1128. [55] Mee MT, Collins JJ, Church GM, et al.Syntrophic exchange in synthetic microbial communities[J]. Proc Natl Acad Sci USA, 2014, 111(20):2149-2156. [56] Morris BE, Henneberger R, Huber H, et al.Microbial syntrophy:interaction for the common good[J]. FEMS Microbiol Rev, 2013, 37(3):384-406. [57] Harcombe W.Novel cooperation experimentally evolved between species[J]. Evolution, 2010, 64(7):2166-2172. [58] Peterson SB, Dunn AK, Klimowicz AK, et al.Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group[J]. Applied and Environmental Microbiology, 2006, 72(8):5421-5427. [59] Mas A, Jamshidi S, Lagadeuc Y, et al.Beyond the black queen Hypothesis[J]. The ISME Journal, 2016, 10(9):2085-2091. [60] Gu SH, Wei Z, Shao ZY, et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8):1002-1010. [61] Wandersman C, Delepelaire P.Bacterial iron sources:from siderophores to hemophores[J]. Annual Review of Microbiology, 2004, 58:611-647. [62] Little AE, Robinson CJ, Peterson SB, et al.Rules of engagement:interspecies interactions that regulate microbial communities[J]. Annual Review of Microbiology, 2008, 62:375-401. [63] Whipps JM.Microbial interactions and biocontrol in the rhizosphere[J]. J Exp Bot, 2001, 52:487-511. [64] Friesen ML, Porter SS, Stark SC, et al.Microbially mediated plant functional traits[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1):23-46. [65] Mercado-Blanco J, Bakker PA.Interactions between plants and beneficial Pseudomonas spp. :exploiting bacterial traits for crop protection[J]. Antonie Van Leeuwenhoek, 2007, 92(4):367-389. [66] Wei Z, Yang T, Friman VP, et al.Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6(1):1-9. [67] Leveau JH, Preston GM.Bacterial mycophagy:definition and diagnosis of a unique bacterial-fungal interaction[J]. New Phytol, 2008, 177(4):859-876. [68] Barnett HL.The nature of mycoparasitism by fungi[J]. Annual Reviews in Microbiology, 1963, 17(1):1-14. [69] Taylor TN, Winfried Remy, Hass. H.Fungi from the Lower Devonian Rhynie chert:Chytridiomycetes[J]. American Journal of Botany, 1992, 79(11):1233-1241. [70] Xiong W, Song Y, Yang K, et al.Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27-35. [71] Jousset A, Rochat L, Scheu S, et al.Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens[J]. Applied and Environmental Microbiology, 2010, 76(15):5263-5268. [72] Flues S, Bass D, Bonkowski M.Grazing of leaf-associated Cercomonads(Protists:Rhizaria:Cercozoa)structures bacterial community composition and function[J]. Environmental Microbiology, 2017, 19(8):3297-3309. [73] Steffan SA, Chikaraishi Y, Currie CR, et al.Microbes are trophic analogs of animals[J]. Proc Natl Acad Sci USA, 2015, 112(49):15119-15124. [74] Niu B, Paulson JN, Zheng X, et al.Simplified and representative bacterial community of maize roots[J]. Proc Natl Acad Sci USA, 2017, 114(12):2450-2459. [75] Robertson GP, Vitousek PM.Nitrogen in agriculture:balancing the cost of an essential resource[J]. Annual Review of Environment and Resources, 2009, 34(1):97-125. [76] Kirtman B, Power SB, Adedoyin JA, et al.Near-term climate change:Projections and predictability// Climate change 2013:in The Physical Science Basis:Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by Change Intergovernmental Panel on Climate[C]. Cambridge:Cambridge University Press, 2013. [77] Challinor AJ, Watson J, Lobell DB, et al.A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4):287-291. [78] Bommarco R, Kleijn D, Potts SG.Ecological intensification:harnessing ecosystem services for food security[J]. Trends in Ecology & Evolution, 2013, 28(4):230-238. [79] Griffiths B, Faber J, Bloem J.Applying soil health indicators to encourage sustainable soil use:the transition from scientific study to practical application[J]. Sustainability, 2018, 10(9):3021-3034. [80] Jackson LE, Bowles TM, Hodson AK, et al.Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems[J]. Current Opinion in Environmental Sustainability, 2012, 4(5):517-522. [81] Schmidt JE, Bowles TM, Gaudin AC.Using ancient traits to convert soil health into crop yield:impact of selection on maize root and rhizosphere function[J]. Frontiers in Plant Science, 2016, 7:373. [82] Lipper L, Thornton P, Campbell BM, et al.Climate-smart agriculture for food security[J]. Nature Climate Change, 2014, 4(12):1068-1072. [83] 杨新萍, 于媛, 许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9):827-835. Yang XP, Yu Y, Xu C.De novo domestication to create new crops[J]. Hereditas(Beijing), 2019, 41(9):827-835. [84] York LM, Galindo-Castaneda T, Schussler JR, et al.Evolution of US maize(Zea mays L.)root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress[J]. J Exp Bot, 2015, 66(8):2347-2358. [85] Duvick DN.The contribution of breeding to yield advances in maize(Zea mays L.)[J], Advances in Agronomy, 2005, 86:83-145. [86] Horton MW, Bodenhausen N, Beilsmith K, et al.Genome-wide association study of Arabidopsis thaliana leaf microbial community[J]. Nature Communications, 2014, 5(1):1-7. [87] Wallace JG, Kremling KA, Kovar LL, et al.Quantitative genetics of the maize leaf microbiome[J]. Phytobiomes Journal, 2018, 2(4):208-224. [88] Wagner MR, Roberts JH, Balint-Kurti P, et al.Heterosis of leaf and rhizosphere microbiomes in field-grown maize[J]. New Phytol, 2020. [89] Huang AC, Jiang T, Liu YX, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440):eaau6389. [90] Mendes LW, Raaijmakers JM, de Hollander M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018, 12(1):212-224. [91] Cermak T, Curtin SJ, Gil-Humanes J, et al.A multipurpose toolkit to enable advanced genome engineering in plants[J]. Plant Cell, 2017, 29(6):1196-1217. [92] 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1219-1229. Jing RC, Lu H.The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7):1219-1229. [93] Zsogon A, Cermak T, Naves ER, et al.De novo domestication of wild tomato using genome editing[J]. Nature Biotechnology, 2018, 36:1211-1216. [94] Ghosh S, Watson A, Gonzalez-Navarro OE, et al.Speed breeding in growth chambers and glasshouses for crop breeding and model plant research[J]. Nature Protocols, 2018, 13(12):2944-2963. [95] 白洋, 钱景美, 周俭民, 等. 农作物微生物组:跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(3):260-265. Bai Y, Qian JM, Zhou JM, et al.Crop microbiome:Breakthrough technology for agriculture[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3):260-265. |
[1] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[2] | 曲春娟, 朱悦, 江晨, 曲明静, 王向誉, 李晓. 铜绿丽金龟线粒体全基因组及其系统发育分析[J]. 生物技术通报, 2023, 39(2): 263-273. |
[3] | 刘雄伟, 刘畅, 曾宪法, 杨小英, 俸婷婷, 赵杰宏, 周英. 朱砂根叶绿体全基因组解析及系统发育分析[J]. 生物技术通报, 2023, 39(1): 232-242. |
[4] | 刘警鞠, 张雨森, 陈娟, 孙炳达, 赵国柱. 曲霉属的现代分类命名研究进展[J]. 生物技术通报, 2022, 38(7): 109-118. |
[5] | 钱方, 高作敏, 胡利娟, 王洪程. 海甘蓝(Crambe abyssinica)叶绿体基因组特征及其系统发育研究[J]. 生物技术通报, 2022, 38(6): 174-186. |
[6] | 卫华宁, 王灵, 李涛, 王娜, 吴华莲, 向文洲. 不同氮源及氮浓度对海水驯化藻株Asterarcys sp.生长及生化组成的影响[J]. 生物技术通报, 2021, 37(10): 34-44. |
[7] | 李裕华, 任永康, 赵兴华, 刘江, 韩斌, 王长彪, 唐朝晖. 禾本科主要农作物叶绿体基因组研究进展[J]. 生物技术通报, 2020, 36(11): 112-121. |
[8] | 刘凌燕, 陈志宇, 曾还雄, 林培彬, 金小宝. 美洲大蠊肠道内生微杆菌的分离鉴定及其抑菌活性研究[J]. 生物技术通报, 2018, 34(6): 172-177. |
[9] | 张广志, 王加宁, 吴晓青, 周方园, 张新建, 赵晓燕, 谢雪迎, 周红姿. 设施番茄根围土样中木霉菌多样性及功能活性分析[J]. 生物技术通报, 2018, 34(4): 179-185. |
[10] | 林贝, 李健秀, 刘雪凌. 木质纤维素水解副产物对乙醇发酵的影响及应对措施[J]. 生物技术通报, 2018, 34(3): 23-30. |
[11] | 史飞飞, 陈通, 程蔚兰, 宋程飞, 季春丽, 李润植. 酸驯化和紫外诱导提高微藻耐酸性[J]. 生物技术通报, 2017, 33(8): 146-151. |
[12] | 李先文, 李玲, 林阳阳, 周棋赢, 李先维, 姚天泽, 陈宏敏. 植物细胞叶绿体的低温反应[J]. 生物技术通报, 2016, 32(9): 1-6. |
[13] | 胡文哲, 谭泽文, 王勇, 徐羡微, 谭志远. 藤县药用野生稻内生固氮菌分离鉴定及系统发育分析[J]. 生物技术通报, 2016, 32(6): 111-119. |
[14] | 霍晨敏, 汤文强. 植物冷信号传导机制研究进展[J]. 生物技术通报, 2016, 32(10): 27-33. |
[15] | 李丽卡, 李象钦, 谢国文, 李海生, 郑毅胜, 藤婕华, 高锦伟. 基于cpDNA片段探讨中-日间断分布双花木属植物的系统发育学[J]. 生物技术通报, 2016, 32(1): 80-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||