生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 234-245.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0717
收稿日期:
2020-06-20
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
卢雯瑩,女,研究实习员,研究方向:植物学、分子生物学;E-mail: 基金资助:
LU Wen-ying1(), ZHAO Lei2, LI Tian-qi1, CUI He-yun3, LIAO Ping-an1
Received:
2020-06-20
Published:
2021-01-26
Online:
2021-01-15
摘要:
蔷薇科植物是植物界重要组成成员,除了观赏类植物月季、玫瑰等,还包含苹果、梨和桃等食用类果树。蔷薇科果实因为富含花青苷而具有丰富多彩的颜色,深受消费者喜爱。近年来,果树学家们围绕果实花青苷积累进行了较为深入的研究,主要探究环境因素或激素信号参与花青苷积累的分子机制。综述了蔷薇科果实着色的分子调控机制,对如何提高果实花青苷积累进行了思考总结,旨为提高蔷薇科果实的商品性和内在品质作出理论支持。
卢雯瑩, 赵磊, 李天奇, 崔鹤云, 廖平安. 蔷薇科植物果实花青苷积累研究进展[J]. 生物技术通报, 2021, 37(1): 234-245.
LU Wen-ying, ZHAO Lei, LI Tian-qi, CUI He-yun, LIAO Ping-an. Research Advances of Fruit Anthocyanin Accumulation in Rosaceae Plants[J]. Biotechnology Bulletin, 2021, 37(1): 234-245.
属名 | 种名 | 拉丁文名 | 染色体数目 | 基因组 大小/Mb |
---|---|---|---|---|
草莓属 | 森林草莓 | Fragaria vesca | 2n=2x=14 | 240 |
草莓 | Fragaria ananassa | 2n=8x=56 | 240 | |
苹果属 | 苹果 | Malus domestica | n=17 | 750 |
李属 | 桃 | Prunus persica | 2n=2x=16 | 265 |
杏 | Prunus armeniaca | 2n=2x=16 | 240 | |
甜樱桃 | Prunus avium | 2n=2x=16 | 338 | |
中国李 | Prunus cerasifera | 2n=2x=16 | ||
欧洲李 | Prunus domestica | 2n=6x=48 | ||
梨属 | 欧洲梨 | Pyrus communis | 2n=2x=34 | 577 |
沙梨 | Pyrus pyrifolia | 2n=2x=34 | ||
白梨 | Pyrus bretschneideri | 2n=2x=34 | 509 | |
悬钩子属 | 黑树莓 | Rubus occidentalis | 2n=2x=14 | 240 |
红树莓 | Rubus idaeus | 2n=2x=14 | 240 |
表1 常见蔷薇科植物种属信息
属名 | 种名 | 拉丁文名 | 染色体数目 | 基因组 大小/Mb |
---|---|---|---|---|
草莓属 | 森林草莓 | Fragaria vesca | 2n=2x=14 | 240 |
草莓 | Fragaria ananassa | 2n=8x=56 | 240 | |
苹果属 | 苹果 | Malus domestica | n=17 | 750 |
李属 | 桃 | Prunus persica | 2n=2x=16 | 265 |
杏 | Prunus armeniaca | 2n=2x=16 | 240 | |
甜樱桃 | Prunus avium | 2n=2x=16 | 338 | |
中国李 | Prunus cerasifera | 2n=2x=16 | ||
欧洲李 | Prunus domestica | 2n=6x=48 | ||
梨属 | 欧洲梨 | Pyrus communis | 2n=2x=34 | 577 |
沙梨 | Pyrus pyrifolia | 2n=2x=34 | ||
白梨 | Pyrus bretschneideri | 2n=2x=34 | 509 | |
悬钩子属 | 黑树莓 | Rubus occidentalis | 2n=2x=14 | 240 |
红树莓 | Rubus idaeus | 2n=2x=14 | 240 |
图1 主要蔷薇科植物CHS(A)、DFR(B)和UFGT(C)蛋白多序列比较 AtCHS:拟南芥 NP_196897.1;FaCHS:草莓 AAX99413.1;MdCHS:苹果 NP_001306186.1;PpCHS-1/2:桃 XP_020411460.1/ XP_007223025.1;PavCHS:甜樱桃 AEG47337.1;PcCHS:欧洲梨 AAX16494.1。AtDFR:拟南芥 NP_199094.1;FaDFR:草莓 AAC25960.1;MdDFR:苹果 AAD26204.1;PpDFR:桃 XP_007222317.1;PavDFR:甜樱桃 AHL45016.1;PcCHS:欧洲梨 AAO39818.1。AtUFGT:拟南芥 NP_197207.1;FaUFGT:草莓 AAS89832.1;MdUFGT:苹果 AAZ79375.1;PpUFGT:桃 XP_007217952.1;PavUFGT:甜樱桃 AHL45018.1;PcUFGT-1/2:欧洲梨 AGL81353.1/ AGL50920.1
图2 主要蔷薇科植物GST转运蛋白多序列比较 AtGST:拟南芥 NP_197224.1;FvGST:草莓 XP_004288578.1;MdGST:苹果 NP_001315851.1;PpGST:桃 XP_007215953.1;PavGST:甜樱桃 XP_021823852.1;PcGST:欧洲梨 ABI79308.1
图3 主要蔷薇科植物MYB调节基因系统进化关系 AtMYB75:拟南芥 NP_176057.1;AtMYB90:拟南芥 NP_176813.1;AtMYB113:拟南芥 NP_176811.1;AtMYB114:拟南芥 NP_176812.1;AtMYB11:拟南芥 NP_191820.1;AtMYB12:拟南芥 NP_182268.1;AtMYB111:拟南芥 NP_199744.1;MdMYB1:苹果 BAM84360.1;MdMYB10:苹果 ACQ45201.1;MdMYBA 苹果 BAF80582.1;MdMYB9 苹果 NP_001280749.1;MdMYB11:苹果 NP_001280958.1;MdMYB24L:苹果 XP_008341440.1;MdMYB3:苹果 AEX08668.1;MdMYB308L 苹果 NP_001315806.1;PcMYB10:欧洲梨 ABX71487.1;PyMYB10:沙梨 ADN26574.1;PyMYB10.1:沙梨 ALN66630.1;PyMYB70:沙梨 XP_018505935.1;PyMYB114:沙梨 ASY06612.1;PbMYB10:白梨 ALU57825.1;PbMYB10b:白梨 ALU57826.1;PbMYB9:白梨 ALU57827.1;FaMYB10:草莓 ABX79947.1;PpMYB10.1:桃 XP_007216530.1;PpMYB10.2:桃 XP_007216223.1;PpMYB10.3:桃 XP_007216350.1;PpMYB10.4:桃 XP_020420992.1;PpMYB10.5:桃 XP_020420994.1;PpMYB10.6:桃 XP_020422250.1;PcMYB10.1:中国李 AKV89247.1;PcMYB10.2:中国李 AKV89248.1;PcMYB10.3:中国李 AKV89249.1;PcMYB10.4:中国李 AKV89250.1;PcMYB10.5:中国李 AKV89251.1;PcMYB10.6:中国李 AKV89252.1;PavMYB10.1:甜樱桃 ALM31949.1;PavMYBA:甜樱桃 AHL45015.1;PaMYB10:杏 ABX71490.1;AtMYB4:拟南芥 NP_195574.1;AtMYB5:拟南芥 NP_192684.1;AtMYB7:拟南芥 NP_179263.1;AtMYB32:拟南芥 NP_195225.1;MdMYB15L:苹果 NP_001280969.1;MdMYB16:苹果 ADL36756.1;MdMYB17:苹果 ADL36757.1;PbMYB120:白梨 XP_009360095.1;PbMYB3:白梨 ALU57828.1;FaMYB1:草莓 AAK84064.1;FcMYB1:智利草莓 ADK56163.1;PpMYB17 桃:ALO81020.1;PpMYB18:桃 ALO81021.1
[1] | He J, Giusti MM. Anthocyanins:Natural colorants with health-promoting properties[J]. Annual Review of Food Science & Technology, 2010,1(1):163-187. |
[2] | Lightbourn GJ, Griesbach RJ, Novotny JA, et al. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L.[J]. Journal of Heredity, 2008,99(2):105-111. |
[3] | Sass-Kiss A, Kiss J, Milotay P, et al. Differences in anthocyanin and carotenoid content of fruits and vegetables[J]. Food Research International, 2005,38(8-9):1023-1029. |
[4] | Weldon WFR. Mendel’s laws of alternative inheritance in peas[J]. Biometrika, 1902,1(2):228-254. |
[5] | Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynjournal[J]. The Plant Cell, 1995,7(7):1071. |
[6] | Han Y, Vimolmangkang S, Soria-Guerra RE, et al. Ectopic expression of apple F3' H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiology, 2010,153(2):806-820. |
[7] | Jiang F, Wang JY, Jia HF, et al. RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynjournal in strawberry fruit[J]. J Plant Growth Regul, 2013,1:182-190. |
[8] | Lin X, Xiao M, Luo Y, et al. The effect of RNAi-induced silencing of FaDFR on anthocyanin metabolism in strawberry(Fragaria× ananassa)fruit[J]. Scientia Horticulturae, 2013,160:123-128. |
[9] |
Jaakola L. New insights into the regulation of anthocyanin biosynjournal in fruits[J]. Trends in Plant Science, 2013,18(9):477-483.
URL pmid: 23870661 |
[10] |
Rahim MA, Busatto N, Trainotti L. Regulation of anthocyanin biosynjournal in peach fruits[J]. Planta, 2014,240(5):913-929.
doi: 10.1007/s00425-014-2078-2 URL pmid: 24827911 |
[11] | González M, Salazar E, Cabrera S, et al. Analysis of anthocyanin biosynjournal genes expression profiles in contrasting cultivars of Japanese plum(Prunus salicina L.)during fruit development[J]. Gene Exp Patterns, 2016,21(1):54-62. |
[12] |
Gomez C, Conejero G, Torregrosa L, et al. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST[J]. The Plant Journal, 2011,67(6):960-970.
URL pmid: 21605207 |
[13] |
Luo H, Dai C, Li Y, et al. Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry[J]. Journal of Experimental Botany, 2018,69(10):2595-2608.
doi: 10.1093/jxb/ery096 URL pmid: 29538703 |
[14] |
Jiang S, Chen M, He N, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research, 2019,6:40.
doi: 10.1038/s41438-019-0118-6 URL pmid: 30854214 |
[15] | Wu M, Liu J, Song L, et al. Differences among the anthocyanin accumulation patterns and related gene expression levels in red pears[J]. Plants, 2019,8(4):100. |
[16] |
Zhao Y, Dong W, Zhu Y, et al. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach[J]. Plant Biotechnol J, 2020,18(5):1284-1295.
URL pmid: 31693790 |
[17] |
An XH, Tian Y, Chen KQ, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. J Plant Physiol, 2012,169(7):710-717.
doi: 10.1016/j.jplph.2012.01.015 URL pmid: 22405592 |
[18] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL pmid: 20674465 |
[19] |
Lloyd A, Brockman A, Aguirre L, et al. Advances in the MYB-bHLH-WD repeat(MBW)pigment regulatory model:Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant and Cell Physiology, 2017,58(9):1431-1441.
doi: 10.1093/pcp/pcx075 URL pmid: 28575507 |
[20] | Ban Y, Honda C, Hatsuyama Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant and Cell Physiology, 2007,48(7):958-970. |
[21] |
Takos AM, Jaffé FW, Jacob SR, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynjournal in red apples[J]. Plant Physiology, 2006,142(3):1216-1232.
doi: 10.1104/pp.106.088104 URL pmid: 17012405 |
[22] |
Espley RV, Hellens RP, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. The Plant Journal, 2007,49(3):414-427.
doi: 10.1111/j.1365-313X.2006.02964.x URL pmid: 17181777 |
[23] |
An XH, Tian Y, Chen KQ, et al. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynjournal of anthocyanin and proanthocyanidin in apples[J]. Plant and Cell Physiology, 2015,56(4):650-662.
doi: 10.1093/pcp/pcu205 URL pmid: 25527830 |
[24] |
Wang Y, Liu W, Jiang H, et al. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynjournal in apple[J]. Plant Physiology and Biochemistry, 2019,139:273-282.
doi: 10.1016/j.plaphy.2019.03.031 URL pmid: 30925437 |
[25] | Vimolmangkang S, Han Y, Wei G, et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynjournal and flower development[J]. BMC Plant Biology, 2013,13(1):176. |
[26] |
An JP, Wang XF, Zhang XW, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation[J]. Plant Biotechnology Journal, 2020,18(2):337-353.
doi: 10.1111/pbi.13201 URL pmid: 31250952 |
[27] |
Feng S, Wang Y, Yang S, et al. Anthocyanin biosynjournal in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta, 2010,232(1):245-255.
URL pmid: 20422209 |
[28] | Pierantoni L, Dondini L, De Franceschi P, et al. Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis[J]. Plant Physiology and Biochemistry, 2010,48(12):1020-1026. |
[29] |
Feng S, Sun S, Chen X, et al. PyMYB10 and PyMYB10. 1 interact with bHLH to enhance anthocyanin accumulation in pears[J]. PLoS One, 2015,10(11):e0142112.
doi: 10.1371/journal.pone.0142112 URL pmid: 26536358 |
[30] | Feng S, Xu Y, Yang L, et al. Genome-wide identification and characterization of R2R3-MYB transcription factors in pear[J]. Scientia Horticulturae, 2015,197:176-182. |
[31] |
Zhai R, Wang Z, Zhang S, et al. Two MYB transcription factors regulate flavonoid biosynjournal in pear fruit(Pyrus bretschneideri Rehd. )[J]. J Exp Bot, 2016,67(5):1275-1284.
URL pmid: 26687179 |
[32] |
Yao G, Ming M, Allan AC, et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynjournal[J]. The Plant Journal, 2017,92(3):437-451.
URL pmid: 28845529 |
[33] | Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, et al. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits[J]. Journal of Experimental Botany, 2014,65(2):401-417. |
[34] | Tuan PA, Bai S, Yaegaki H, et al. The crucial role of PpMYB10. 1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype[J]. BMC Plant Biology, 2015,15(1):280. |
[35] | Gu C, Liao L, Zhou H, et al. Constitutive activation of an anthocyanin regulatory gene PcMYB10. 6 is related to red coloration in purple-foliage plum[J]. PLoS One, 2015,10(8):e0135159. |
[36] |
Shen X, Zhao K, Liu L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynjournal in red-colored sweet cherry cv. Hong Deng(Prunus avium L.)[J]. Plant and Cell Physiology, 2014,55(5):862-880.
URL pmid: 24443499 |
[37] |
Jin W, Wang H, Li M, et al. The R2R3 MYB transcription factor PavMYB10. 1 involves in anthocyanin biosynjournal and determines fruit skin colour in sweet cherry(Prunus avium L.)[J]. Plant Biotechnology Journal, 2016,14(11):2120-2133.
doi: 10.1111/pbi.12568 URL pmid: 27107393 |
[38] | Xi W, Feng J, Liu Y, et al. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynjournal in apricots and determines red blushed skin[J]. BMC Plant Biol, 2019,1:287. |
[39] |
Zhou H, Liao L, Xu S, et al. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach[J]. Plant Mol Biol, 2018,98(1-2):169-183.
URL pmid: 30155830 |
[40] |
Aharoni A, De Vos CH, Wein M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. The Plant Journal, 2001,28(3):319-332.
URL pmid: 11722774 |
[41] |
Salvatierra A, Pimentel P, Moya-León MA, et al. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene[J]. Phytochemistry, 2013,90:25-36.
URL pmid: 23522932 |
[42] |
Xu H, Wang N, Liu J, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and Mdb-HLH33 genes[J]. Plant Mol Biol, 2017,94(1-2):149-165.
URL pmid: 28286910 |
[43] |
Xu H, Yang G, Zhang J, et al. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus[J]. Biochemical and Biophysical Research Communications, 2018,500(2):405-410.
URL pmid: 29655791 |
[44] | Zhou H, Wang LK, Wang F, et al. Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. New Phytologist, 2019,221(4):1919-1934. |
[45] | Song L, Wang X, Han W, et al. PbMYB120 negatively regulates anthocyanin accumulation in pear[J]. International Journal of Molecular Sciences, 2020,21(4):1528. |
[46] |
Li YY, Mao K, Zhao C, et al. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynjournal and red fruit coloration in apple[J]. Plant Physiology, 2012,160(2):1011-1022.
URL pmid: 22855936 |
[47] | An JP, Qu FJ, Yao JF, et al. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple[J]. Horticulture Research, 2017,4(1):1-9. |
[48] | Plunkett BJ, Henry-Kirk R, Friend A, et al. Apple B-box factors regulate light-responsive anthocyanin biosynjournal genes[J]. Scientific Reports, 2019,9(1):1-14. |
[49] |
An JP, Wang XF, Espley RV, et al. An apple B-Box protein MdBBX37 modulates anthocyanin biosynjournal and hypocotyl elongation synergistically with MdMYBs and MdHY5[J]. Plant and Cell Physiology, 2020,61(1):130-143.
URL pmid: 31550006 |
[50] | An JP, Liu YJ, Zhang XW, et al. Dynamic regulation of different light intensity-modulated anthocyanin biosynjournal by BT2-TCP46-MYB1 in apple[J]. J Exp Bot, 2020,71(10):3094-3109. |
[51] |
Yang T, Ma H, Zhang J, et al. Systematic identification of long non-coding RNA s expressed during light-induced anthocyanin accumu-lation in apple fruit[J]. Plant J, 2019,100(3):572-590.
doi: 10.1111/tpj.14470 URL pmid: 31344284 |
[52] |
Bai S, Tao R, Tang Y, et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnology Journal, 2019,17(10):1985-1997.
doi: 10.1111/pbi.13114 URL pmid: 30963689 |
[53] |
Li Y, Xu P, Chen G, et al. FvbHLH9 functions as a positive regulator of anthocyanin biosynjournal by forming a HY5-bHLH9 transcription complex in strawberry fruits[J]. Plant and Cell Physiology, 2020,61(4):826-837.
URL pmid: 32016380 |
[54] |
Tao R, Bai S, Ni J, et al. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’pear[J]. Planta, 2018,248(1):37-48.
URL pmid: 29546452 |
[55] | Ni J, Bai S, Zhao Y, et al. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynjournal in ‘Red Zaosu’pear fruits by interacting with MYB114[J]. Plant Molecular Biology, 2019,99(1-2):67-78. |
[56] | Xu F, Cao S, Shi L, et al. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit[J]. J Agricl Food Chem, 2014,62(20):4778-4783. |
[57] |
Zhao Y, Dong W, Wang K, et al. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars[J]. Frontiers in Plant Science, 2017,8:1552.
URL pmid: 28943881 |
[58] |
An JP, Wang XF, Zhang XW, et al. MdBBX22 regulates UV-B-induced anthocyanin biosynjournal through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation[J]. Plant Biotechnol J, 2019,17(12):2231-2233.
doi: 10.1111/pbi.13196 URL pmid: 31222855 |
[59] |
Fang H, Dong Y, Yue X, et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature[J]. Plant, Cell & Environment, 2019,42(7):2090-2104.
doi: 10.1111/pce.13552 URL pmid: 30919454 |
[60] |
Hu J, Fang H, Wang J, et al. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synjournal in apple[J]. Plant Science, 2020,292:110377.
doi: 10.1016/j.plantsci.2019.110377 URL pmid: 32005382 |
[61] |
Xie XB, Li S, Zhang RF, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant, Cell & Environment, 2012,35(11):1884-1897.
URL pmid: 22519753 |
[62] | Wang KL, Micheletti D, Palmer J, et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J]. Plant Cell Environ, 2011,34(7):1176-1190. |
[63] | Zhang Y, Liu Y, Hu W, et al. Anthocyanin accumulation and rela-ted gene expression affected by low temperature during strawberry coloration[J]. Acta Physiol Plant, 2018,40(11):192. |
[64] | Martinsen BK, Aaby K, Skrede G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams[J]. Food Chemistry, 2020,316:126297. |
[65] | An JP, Zhang XW, Bi SQ, et al. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynjournal in apple[J]. Plant J, 2020,101(3):573-589. |
[66] | Wang XF, An JP, Liu X, et al. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynjournal by interacting with the MdMYB1 transcription factor[J]. Plant Physiology, 2018,178(2):890-906. |
[67] | Li D, Zhang X, Li L, et al. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit[J]. Food Chemistry, 2019,285:163-170. |
[68] | Cheng Y, Liu L, Yuan C, et al. Molecular characterization of ethylene-regulated anthocyanin biosynjournal in plums during fruit ripening[J]. Plant Mol Biol Rep, 2016,34(4):777-785. |
[69] | An JP, Wang XF, Li YY, et al. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynjournal and anthocyanin accumulation[J]. Plant Physiology, 2018,178(2):808-823. |
[70] | Zhang J, Xu H, Wang N, et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynth-esis in apple[J]. Plant Mol Biol, 2018,98(3):205-218. |
[71] | Ni J, Zhao Y, Tao R, et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynjournal pathway by suppressing anthocyanin biosynjournal in red Chinese pear fruits[J]. Plant Biotechnology Journal, 2020,18(5):1223-1240. |
[72] | Qi T, Song S, Ren Q, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011,23(5):1795-1814. |
[73] | Wu T, Liu HT, Zhao GP, et al. Jasmonate and ethylene-regulated ethylene response factor 22 promotes lanolin-induced anthocyanin biosynjournal in ‘Zaosu’pear(Pyrus bretschneideri Rehd. )fruit[J]. Biomolecules, 2020,10(2):278. |
[74] | An JP, Yao JF, Xu RR, et al. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation[J]. Plant Cell Environ, 2018,41(11):2678-2692. |
[75] | Mori T, Sakurai M, Seki M, et al. Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell[J]. Journal of the Science of Food and Agriculture, 1994,65(3):271-276. |
[76] | Moro L, Hassimotto NMA, Purgatto E. Postharvest auxin and methyl jasmonate effect on anthocyanin biosynjournal in red raspberry(Rubus idaeus L.)[J]. Journal of Plant Growth Regulation, 2017,36(3):773-782. |
[77] | Wang Y, Wang N, Xu H, et al. Auxin regulates anthocyanin biosynjournal through the Aux/IAA-ARF signaling pathway in apple[J]. Horticulture Research, 2018,5(1):1-11. |
[78] | Zhang Y, Liu Z, Liu R, et al. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner[J]. Plant Signal Beha, 2011,6(5):632-634. |
[79] | Zhai R, Wang Z, Yang C, et al. PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit[J]. Horticulture Research, 2019,6:137. |
[80] | Ji XH, Wang YT, Zhang R, et al. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynjournal in callus cultures of red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J]. Plant Cell Tiss Organ Cult, 2015,120:325-337. |
[81] | Wang Y, Sun J, Wang N, et al. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynjournal in red-fleshed apple(Malus sieversii f. niedzwetzkyana)callus[J]. Functional Plant Biology, 2019,46(2):187-196. |
[82] | Zheng J, An Y, Wang L. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’apple flesh[J]. Plant Cell Tiss Organ Cult, 2018,134(2):319-330. |
[83] | Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J]. New Phytologist, 2008,179(4):1004-1016. |
[84] | Das PK, Shin DH, Choi SB, et al. Cytokinins enhance sugar-induced anthocyanin biosynjournal in Arabidopsis[J]. Molecules and Cells, 2012,34(1):93-101. |
[85] | Li Y, Van den Ende W, Rolland F. Sucrose induction of anthocyanin biosynjournal is mediated by DELLA[J]. Molecular Plant, 2014,7(3):570-572. |
[86] | Liu XJ, An XH, Liu X, et al. MdSnRK1. 1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple[J]. Journal of Experimental Botany, 2017,68(11):2977-2990. |
[1] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[2] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[3] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[4] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[5] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[6] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[7] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[8] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[9] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[10] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[11] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[12] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[13] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[14] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[15] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||