生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 61-72.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1166
李苑虹1(), 郭昱昊1, 曹燕1, 祝振洲1, 王飞飞1,2()
收稿日期:
2022-09-21
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
王飞飞,男,博士,讲师,研究方向 :微藻生物资源与生物技术;E-mail :twangff@whpu.edu.cn作者简介:
李苑虹,女,硕士研究生,研究方向:微藻生物资源与生物技术;E-mail: lyhwhpu0807@163.com
基金资助:
LI Yuan-hong1(), GUO Yu-hao1, CAO Yan1, ZHU Zhen-zhou1, WANG Fei-fei1,2()
Received:
2022-09-21
Published:
2023-06-26
Online:
2023-07-07
摘要:
微藻因独特的生长优势及富含油脂、蛋白质、类胡萝卜素、不饱和脂肪酸等物质,使其在生物能源、功能食品、医药保健等领域应用广泛。非生物胁迫(缺氮、高光强、高温、高盐、重金属等)是诱导藻细胞快速富集油脂等代谢物的传统且有效的手段,但通常是以牺牲微藻生长量为代价,限制了目标产物的高效积累。植物激素是一种调节微藻细胞生长代谢的重要小分子信号物质,其调控微藻的生长代谢过程主要包括促进藻细胞的分裂、调控藻类抗逆性、提高光合作用效率及重要次级代谢产物的积累等。因此,通过将植物激素和非生物胁迫相结合的手段可以进一步促进目标产物的合成并提高微藻在非生物胁迫条件下的耐受能力。论文总结了近年来被应用到微藻培养体系中的植物激素种类、可能的合成途径及其生理功能,分析了其在藻类应答非生物胁迫中的作用及对细胞生长和目标产物合成的影响,探讨了植物激素调控下微藻抵抗不同非生物胁迫的内在机制研究及其耐受逆境协同油脂积累的可能机制,并展望了外源植物激素在微藻生物质产业发展中的机遇和挑战,旨在为微藻高效培养及高附加值产物的积累提供理论依据和技术指导。
李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72.
LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone[J]. Biotechnology Bulletin, 2023, 39(6): 61-72.
图1 植物激素在微藻中可能的生物合成途径 示意图显示了在微藻中吲哚-3-乙酸、细胞分裂素、脱落酸和赤霉素MEP依赖的可能的生物合成途径,虚线箭头表示多步反应的途径,问号表示未定义的途径。PEP:磷酸烯醇式丙酮酸;IAA:吲哚-3-乙酸;IAM:吲哚-3-乙酰胺;IAAld:吲哚乙醛;IPyA:吲哚-3-丙酮酸;Trp:色氨酸;G3P:甘油醛-3-磷酸;MEP:甲基赤藓糖醇磷酸酯;DMAPP:二甲基丙烯焦磷酸酯;IPP:异戊烯焦磷酸;GGPP : 双(牻牛儿基)二磷酸盐;GA12ald:赤霉素A12醛
Fig. 1 Feasible biosynthetic pathways of phytohormones in microalgae Schematic cartoon displays the indole-3-acetic acid, cytokinins, abscisic acid and gibberellins MEP-dependent possible biosynthetic pathways. Dashed arrows refer to pathways with multistep reaction. Question mark indicates undefined pathways. PEP: Phosphoenolpyruvate. IAA: Indole-3-acetic acid. IAM: Indoleacetalamine. IAAld: Indol-eacetaldehyde. IPyA: Indole-3-pyruvic acid. Trp: Tryptophan. G3P: Glyceraldehyde 3-phosphate. MEP: Methylery-thritol phosphate. DMAPP: Dimethylallyl pyrophosphate. IPP: Isopentenyl pyrophosphate. GGPP: Geranylgeranyl dip-hosphate. GA12ald: Gibberellin A12 aldehyde
植物激素 Phytohormone | 名称 Name | 剂量 Dosage | 微藻 Microalgae | 培养条件Culture condition | 结果 Results | 参考文献 Reference |
---|---|---|---|---|---|---|
生长素Auxins | IAA | 10-5 mol/L | 斜生栅藻Scenedesmus obliquus | BBM | 生物量增加了1.9倍 | [ |
IAA | 20 mg/ L | 栅藻Scenedesmus sp. SDEC-8 索罗金小球藻 Chlorella sorokiniana SDEC-18 | BG11 | SDEC-8和SDEC-18的生物量分别提高了59.3%和76.6% | [ | |
IBA | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂肪含量分别提高至(1.96±0.11)g/L和(34.88±3.87)% | [ | |
IAA | 5 mg/L | 海洋微拟球藻 Nanochloropsis oceanica | F/2 | 脂肪含量提高了149.4% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量增加了340%。脂质和蛋白质分别增加300%和351% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量较对照提高了329% | ||
细胞分裂素Cytokinin | BAP | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂质含量分别为(1.88±0.061)g/L和(31.84±1.33)%,提高了329% | [ |
Z | 0.1 mg/L | 绿藻Acutodesmus obliquus | BG11 | 生物量增加了60.7% | [ | |
赤霉素Gibberellin | GA3 | 10 μmol/L | 普通小球藻Chlorella vulgaris | F/2 | 细胞密度增加了142% | [ |
GA3 | 100 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量产量和TFA产率分别提高了3.3倍和3.9倍,EPA产率提高了3.2倍 | [ | |
脱落酸Abscisic acid | ABA | 1.0 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照的1.8倍 | [ |
ABA | 10 mg/L | 小球藻Chlorella sp. | BG11 | 脂质含量为30.31%,而对照组脂质含量仅为21.23% | [ | |
水杨酸Salicylic acid | SA | 10 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照组的1.6倍 | [ |
茉莉酸Jasmonic acid | MeJA | 1 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量累积至2.7倍 | [ |
JA | 0.5 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量是对照组的两倍 | [ | |
油菜素甾醇Brassinosteroid | EBL | 1 μmol/L | 绿藻Acutodesmus obliquus | BBM | 与对照组相比,细胞数量增加了99%;蛋白质水平上升了148% | [ |
褪黑素Melatonin | MT | 10 μmol/L | 单壳缝藻Monoraphidium sp. | BG11 | 脂质含量增加1.44倍 | [ |
其他植物激素 Other phytohormone | 2,4-D | 1 mg/L | 蛋白核小球藻Chlorella pyrenoidosa | 城市污水 摇瓶培养 | 微藻生物量和脂质产量的增加最为明显,分别为(0.86±0.04)和(0.46±0.02)g/L,较之分别增加了89.7%和76.5% | [ |
室外培养 | 使用高度为 0.50 m、直径为 0.06 m 的玻璃柱生物反应器 其最大生物量为(1.203±0.056)g/L,比对照组高80% |
表1 植物激素调控微藻生物质和储能物质积累
Table 1 Phytohormones regulating the accumulation of microalgae biomass and energy storage substances
植物激素 Phytohormone | 名称 Name | 剂量 Dosage | 微藻 Microalgae | 培养条件Culture condition | 结果 Results | 参考文献 Reference |
---|---|---|---|---|---|---|
生长素Auxins | IAA | 10-5 mol/L | 斜生栅藻Scenedesmus obliquus | BBM | 生物量增加了1.9倍 | [ |
IAA | 20 mg/ L | 栅藻Scenedesmus sp. SDEC-8 索罗金小球藻 Chlorella sorokiniana SDEC-18 | BG11 | SDEC-8和SDEC-18的生物量分别提高了59.3%和76.6% | [ | |
IBA | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂肪含量分别提高至(1.96±0.11)g/L和(34.88±3.87)% | [ | |
IAA | 5 mg/L | 海洋微拟球藻 Nanochloropsis oceanica | F/2 | 脂肪含量提高了149.4% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量增加了340%。脂质和蛋白质分别增加300%和351% | [ | |
IBA | 15 mg/ L | 普通小球藻Chlorella vulgaris | BB | 生物量较对照提高了329% | ||
细胞分裂素Cytokinin | BAP | 10 mg/L | 栅藻Desmodesmus sp. | BG11 | 生物量和脂质含量分别为(1.88±0.061)g/L和(31.84±1.33)%,提高了329% | [ |
Z | 0.1 mg/L | 绿藻Acutodesmus obliquus | BG11 | 生物量增加了60.7% | [ | |
赤霉素Gibberellin | GA3 | 10 μmol/L | 普通小球藻Chlorella vulgaris | F/2 | 细胞密度增加了142% | [ |
GA3 | 100 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量产量和TFA产率分别提高了3.3倍和3.9倍,EPA产率提高了3.2倍 | [ | |
脱落酸Abscisic acid | ABA | 1.0 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照的1.8倍 | [ |
ABA | 10 mg/L | 小球藻Chlorella sp. | BG11 | 脂质含量为30.31%,而对照组脂质含量仅为21.23% | [ | |
水杨酸Salicylic acid | SA | 10 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量为对照组的1.6倍 | [ |
茉莉酸Jasmonic acid | MeJA | 1 μmol/L | 金藻Chrysophyte 单胞藻Monodopsis subterranean | BBM | 生长后期,生物量累积至2.7倍 | [ |
JA | 0.5 mg/L | 普通小球藻Chlorella vulgaris | BBM | 脂质含量是对照组的两倍 | [ | |
油菜素甾醇Brassinosteroid | EBL | 1 μmol/L | 绿藻Acutodesmus obliquus | BBM | 与对照组相比,细胞数量增加了99%;蛋白质水平上升了148% | [ |
褪黑素Melatonin | MT | 10 μmol/L | 单壳缝藻Monoraphidium sp. | BG11 | 脂质含量增加1.44倍 | [ |
其他植物激素 Other phytohormone | 2,4-D | 1 mg/L | 蛋白核小球藻Chlorella pyrenoidosa | 城市污水 摇瓶培养 | 微藻生物量和脂质产量的增加最为明显,分别为(0.86±0.04)和(0.46±0.02)g/L,较之分别增加了89.7%和76.5% | [ |
室外培养 | 使用高度为 0.50 m、直径为 0.06 m 的玻璃柱生物反应器 其最大生物量为(1.203±0.056)g/L,比对照组高80% |
图2 外源植物激素介导的微藻非生物胁迫耐受和脂质积累的可能机制
Fig. 2 Feasible mechanism of exogenous phytohormone-mediated abiotic stress tolerance and lipid accumulation in microalgae
[1] | Hoang AT, Sirohi R, Pandey A, et al. Biofuel production from microalgae: challenges and chances[J]. Phytochem Rev, 2022: 1-38. |
[2] |
Rizwan M, Mujtaba G, Memon SA, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review[J]. Renew Sustain Energy Rev, 2018, 92: 394-404.
doi: 10.1016/j.rser.2018.04.034 URL |
[3] |
Lu YD, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?[J]. Trends Plant Sci, 2015, 20(5): 273-282.
doi: S1360-1385(15)00007-2 pmid: 25697753 |
[4] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[5] |
Woodward AW, Bartel B. Auxin: regulation, action, and interaction[J]. Ann Bot, 2005, 95(5): 707-735.
doi: 10.1093/aob/mci083 URL |
[6] |
Stirk WA, Ördög V, Novák O, et al. Auxin and cytokinin relationships in 24 microalgal strains(1)[J]. J Phycol, 2013, 49(3): 459-467.
doi: 10.1111/jpy.12061 pmid: 27007035 |
[7] |
Romanenko EA, Kosakovskaya IV, Romanenko PA. Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt I. auxins, abscisic acid, ethylene[J]. Inter J Algae, 2015, 17(3): 275-289.
doi: 10.1615/InterJAlgae.v17.i3 URL |
[8] |
Chang WJ, Li YP, Qu YH, et al. Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA[J]. Renew Energy, 2022, 187: 819-828.
doi: 10.1016/j.renene.2022.01.108 URL |
[9] |
Stirk WA, van Staden J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications[J]. Biotechnol Adv, 2020, 44: 107612.
doi: 10.1016/j.biotechadv.2020.107612 URL |
[10] |
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation[J]. Annu Rev Plant Biol, 2006, 57: 431-449.
pmid: 16669769 |
[11] |
Nayar S. Exploring the role of a cytokinin-activating enzyme LONELY GUY in unicellular microalga Chlorella variabilis[J]. Front Plant Sci, 2021, 11: 611871.
doi: 10.3389/fpls.2020.611871 URL |
[12] |
Stirk WA, Bálint P, Tarkowská D, et al. Hormone profiles in microalgae: gibberellins and brassinosteroids[J]. Plant Physiol Biochem, 2013, 70: 348-353.
doi: 10.1016/j.plaphy.2013.05.037 URL |
[13] |
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447 |
Gao XH, Fu XD. Research progress for the gibberellin signaling and action on plant growth and development[J]. Biotechnol Bull, 2018, 34(7): 1-13. | |
[14] |
Mansouri H, Ebrahim Nezhad S. Improvement in biochemical parameters and changes in lipid profile of Scenedesmus obliquus by plant growth regulators under mixotrophic condition[J]. Biomass Bioenergy, 2020, 140: 105708.
doi: 10.1016/j.biombioe.2020.105708 URL |
[15] | Kabaoğlu U, Aslan U, Ünal D. Effect of gibberellin on some fatty acid profiles under nitrogen starvation in green algae Chlorella vulgaris[J]. Int J Second Metab, 2021: 11-19. |
[16] |
Stirk WA, Bálint P, Tarkowská D, et al. Effect of light on growth and endogenous hormones in Chlorella minutissima(Trebouxiophyceae)[J]. Plant Physiol Biochem, 2014, 79: 66-76.
doi: 10.1016/j.plaphy.2014.03.005 URL |
[17] |
Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid: emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61: 651-679.
doi: 10.1146/annurev-arplant-042809-112122 pmid: 20192755 |
[18] | Xu ZY, Yoo YJ, Hwang I. ABA conjugates and their physiological roles in plant cells[M]// Zhang DP. Abscisic acid:metabolism, transport and signaling, Dordrecht: Springer, 2014: 77-87. |
[19] |
Yoshida K, Igarashi E, Mukai M, et al. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid[J]. Plant Cell Environ, 2003, 26(3): 451-457.
doi: 10.1046/j.1365-3040.2003.00976.x URL |
[20] |
Pierik R, Tholen D, Poorter H, et al. The Janus face of ethylene: growth inhibition and stimulation[J]. Trends Plant Sci, 2006, 11(4): 176-183.
doi: 10.1016/j.tplants.2006.02.006 URL |
[21] |
Le Henry M, Charton M, Alignan M, et al. Ethylene stimulates growth and affects fatty acid content of Synechocystis sp. PCC 6803[J]. Algal Res, 2017, 26: 234-239.
doi: 10.1016/j.algal.2017.07.032 URL |
[22] |
Kim SH, Lim SR, Hong SJ, et al. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris[J]. J Agric Food Chem, 2016, 64(23): 4807-4816.
doi: 10.1021/acs.jafc.6b00541 URL |
[23] |
Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling[J]. J Plant Growth Regul, 2007, 26(3): 290-300.
doi: 10.1007/s00344-007-9017-4 URL |
[24] |
Caretto S, Linsalata V, Colella G, et al. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress[J]. Int J Mol Sci, 2015, 16(11): 26378-26394.
doi: 10.3390/ijms161125967 pmid: 26556338 |
[25] |
Oklestkova J, Rárová L, Kvasnica M, et al. Brassinosteroids: synthesis and biological activities[J]. Phytochem Rev, 2015, 14(6): 1053-1072.
doi: 10.1007/s11101-015-9446-9 URL |
[26] | Bajguz A. Brassinosteroids in microalgae: application for growth improvement and protection against abiotic stresses[M]// HayatS, YusufM, BhardwajR, et al. Brassinosteroids:Plant growth and development. Singapore: Springer, 2019: 45-58. |
[27] |
Stirk WA, Bálint P, Tarkowská D, et al. Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress[J]. Eur J Phycol, 2018, 53(3): 273-279.
doi: 10.1080/09670262.2018.1441447 URL |
[28] |
Lu YD, Jiang P, Liu SF, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes(bkts)in microalga Haematococcus pluvialis[J]. Bioresour Technol, 2010, 101(16): 6468-6474.
doi: 10.1016/j.biortech.2010.03.072 URL |
[29] |
Song XT, Zhao YT, Li T, et al. Enhancement of lipid accumulation in Monoraphidium sp. QLY-1 by induction of strigolactone[J]. Bioresour Technol, 2019, 288: 121607.
doi: 10.1016/j.biortech.2019.121607 URL |
[30] |
Song XT, Zhao YT, Han BY, et al. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions[J]. Bioresour Technol, 2020, 306: 123107.
doi: 10.1016/j.biortech.2020.123107 URL |
[31] |
Zhao YT, Wang HP, Yu CL, et al. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions[J]. Bioresour Technol, 2021, 319: 124150.
doi: 10.1016/j.biortech.2020.124150 URL |
[32] |
Zhao YT, Li DF, Xu JW, et al. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J]. Bioresour Technol, 2018, 259: 46-53.
doi: 10.1016/j.biortech.2018.03.014 URL |
[33] |
Arumugam M, Udayan A, Sabapathy H, et al. Plant growth regulator triggered metabolomic profile leading to increased lipid accumulation in an edible marine microalga[J]. J Appl Phycol, 2021, 33(3): 1353-1365.
doi: 10.1007/s10811-021-02424-0 |
[34] |
Zhao YT, Song XT, Zhao P, et al. Role of melatonin in regulation of lipid accumulation, autophagy and salinity-induced oxidative stress in microalga Monoraphidium sp. QLY-1[J]. Algal Res, 2021, 54: 102196.
doi: 10.1016/j.algal.2021.102196 URL |
[35] |
Guldhe A. Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production[J]. Algal Res, 2019, 40: 101518.
doi: 10.1016/j.algal.2019.101518 URL |
[36] |
Madani NSH, Shamsaie Mehrgan M, Hosseini Shekarabi SP, et al. Regulatory effect of gibberellic acid(GA3)on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana[J]. J Appl Phycol, 2021, 33(1): 255-262.
doi: 10.1007/s10811-020-02291-1 |
[37] |
da Silveira JT, da Rosa APC, Costa JAV. Modulating phytohormone supplementation can efficiently increase biomass and lipid production in Spirulina(Arthrospira)[J]. Bioenergy Res, 2022, 15(1): 112-120.
doi: 10.1007/s12155-021-10310-3 |
[38] |
Singh J, Jain D, Agarwal P, et al. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07[J]. Process Biochem, 2020, 95: 223-234.
doi: 10.1016/j.procbio.2020.02.012 URL |
[39] |
Gee DM, Archer L, Fleming GTA, et al. The effect of nutrient and phytohormone supplementation on the growth, pigment yields and biochemical composition of newly isolated microalgae[J]. Process Biochem, 2020, 92: 61-68.
doi: 10.1016/j.procbio.2020.03.001 URL |
[40] |
Han XF, Zeng HR, Bartocci P, et al. Phytohormones and effects on growth and metabolites of microalgae: a review[J]. Fermentation, 2018, 4(2): 25.
doi: 10.3390/fermentation4020025 URL |
[41] |
Kobayashi M, Hirai N, Kurimura Y, et al. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis[J]. Plant Growth Regul, 1997, 22: 79-85.
doi: 10.1023/A:1005862809711 URL |
[42] |
Mandal MK, Chanu NK, Chaurasia N. Exogenous addition of indole acetic acid and kinetin under nitrogen-limited medium enhances lipid yield and expression of glycerol-3-phosphate acyltransferase & diacylglycerol acyltransferase genes in indigenous microalgae: a potential approach for biodiesel production[J]. Bioresour Technol, 2020, 297: 122439.
doi: 10.1016/j.biortech.2019.122439 URL |
[43] |
Renuka N, et al. Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation[J]. Energy Convers Manag, 2018, 168: 522-528.
doi: 10.1016/j.enconman.2018.05.029 URL |
[44] |
Yu Z, Song MM, Pei HY, et al. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae[J]. Bioresour Technol, 2017, 239: 87-96.
doi: 10.1016/j.biortech.2017.04.120 URL |
[45] |
Touliabah HES, Almutairi AW. Effect of phytohormones supplementation under nitrogen depletion on biomass and lipid production of Nannochloropsis oceanica for integrated application in nutrition and biodiesel[J]. Sustainability, 2021, 13(2): 592.
doi: 10.3390/su13020592 URL |
[46] | Mousa A, El-Zamik F, Hegazy M, et al. Maximizing lipids production from some local cultures of microalgae using phytohormones[J]. Zagazig J Agric Res, 2018, 45(6): 2087-2099. |
[47] |
Renuka N, Guldhe A, Singh P, et al. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress[J]. Energy Convers Manag, 2017, 140: 14-23.
doi: 10.1016/j.enconman.2017.02.065 URL |
[48] |
Jusoh M, Loh SH, Aziz A, et al. Gibberellin promotes cell growth and induces changes in fatty acid biosynthesis and upregulates fatty acid biosynthetic genes in Chlorella vulgaris UMT-M1[J]. Appl Biochem Biotechnol, 2019, 188(2): 450-459.
doi: 10.1007/s12010-018-02937-4 |
[49] |
Arora S, Mishra G. Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830[J]. J Appl Phycol, 2021, 33(1): 287-299.
doi: 10.1007/s10811-020-02317-8 |
[50] |
Wu GX, Gao ZQ, Du HM, et al. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains[J]. J Gen Appl Microbiol, 2018, 64(1): 42-49.
doi: 10.2323/jgam.2017.06.001 URL |
[51] |
Lin YH, Dai Y, Xu WN, et al. The growth, lipid accumulation and fatty acid profile analysis by abscisic acid and indol-3-acetic acid induced in Chlorella sp. FACHB-8[J]. Int J Mol Sci, 2022, 23(7): 4064.
doi: 10.3390/ijms23074064 URL |
[52] |
Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A, et al. The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus(Chlorophyceae)[J]. Plant Physiol Biochem, 2018, 124: 175-183.
doi: 10.1016/j.plaphy.2018.01.016 URL |
[53] | Wang Q, Zhou X, Jin WB, et al. Enhancing cultivation of biodiesel-promising microalgae Chlorella pyrenoidosa using plant hormones in municipal wastewater[J]. Biomass Convers Biorefinery, 2021: 1-11. |
[54] |
Udayan A, Sabapathy H, Arumugam M. Stress hormones mediated lipid accumulation and modulation of specific fatty acids in Nannochloropsis oceanica CASA CC201[J]. Bioresour Technol, 2020, 310: 123437.
doi: 10.1016/j.biortech.2020.123437 URL |
[55] |
Yu XJ, Sun J, Sun YQ. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp[J]. Biochem Eng J, 2016, 112: 258-268.
doi: 10.1016/j.bej.2016.05.002 URL |
[56] |
Nazir Y, Halim H, Prabhakaran P, et al. Different classes of phytohormones act synergistically to enhance the growth, lipid and DHA biosynthetic capacity of Aurantiochytrium sp. SW1[J]. Biomolecules, 2020, 10(5): 755.
doi: 10.3390/biom10050755 URL |
[57] |
Liu C, Hu B, Cheng YL, et al. Carotenoids from fungi and microalgae: a review on their recent production, extraction, and developments[J]. Bioresour Technol, 2021, 337: 125398.
doi: 10.1016/j.biortech.2021.125398 URL |
[58] |
Alsenani F, Wass TJ, Ma RJ, et al. Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae[J]. Algal Res, 2019, 37: 320-335.
doi: 10.1016/j.algal.2018.12.002 |
[59] | Mousavi P, Morowvat M, Montazeri-Najafabady N, et al. Investigating the effects of phytohormones on growth and β-carotene production in a naturally isolates stain of Dunaliella salina[J]. J App Pharm Sci, 2016: 164-171. |
[60] |
Ding W, Zhao YT, Xu JW, et al. Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis[J]. J Agric Food Chem, 2018, 66(29): 7701-7711.
doi: 10.1021/acs.jafc.8b02178 URL |
[61] |
Zhao YT, Shang MM, Xu JW, et al. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid[J]. Process Biochem, 2015, 50(12): 2072-2077.
doi: 10.1016/j.procbio.2015.09.004 URL |
[62] |
Lee CS, Choi YE, Yun YS. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application[J]. J Biotechnol, 2016, 236: 120-127.
doi: 10.1016/j.jbiotec.2016.08.012 URL |
[63] |
Imlay JA. Cellular defenses against superoxide and hydrogen peroxide[J]. Annu Rev Biochem, 2008, 77: 755-776.
doi: 10.1146/annurev.biochem.77.061606.161055 pmid: 18173371 |
[64] |
Tiwari S, Prasad SM. Exogenous phytohormones modulates cypermethrin stress in Anabaena sp. and Nostoc muscorum: toxicity alleviation by up-regulation of ascorbate-glutathione cycle[preprint]. ResearchGate, 2021. DOI:10.21203/rs.3.rs-415081/v1.
doi: 10.21203/rs.3.rs-415081/v1 |
[65] |
Ding W. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance[J]. Algal Res, 2018, 33: 256-265.
doi: 10.1016/j.algal.2018.05.021 URL |
[66] |
Li XM, Zhang XN, Zhao YT, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress[J]. Bioresour Technol, 2020, 315: 123833.
doi: 10.1016/j.biortech.2020.123833 URL |
[67] |
Fu L, Li QC, Chen CL, et al. Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth[J]. Chemosphere, 2021, 265: 129084.
doi: 10.1016/j.chemosphere.2020.129084 URL |
[68] |
Gao F, Yang L, Chen AJ, et al. Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa[J]. Bioresour Technol, 2022, 351: 126900.
doi: 10.1016/j.biortech.2022.126900 URL |
[69] |
Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, et al. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress[J]. Sci Rep, 2020, 10(1): 10193.
doi: 10.1038/s41598-020-67085-4 pmid: 32576894 |
[70] |
Pérez-Pérez ME, Couso I, Heredia-Martínez LG, et al. Monitoring autophagy in the model green microalga Chlamydomonas reinhardtii[J]. Cells, 2017, 6(4): 36.
doi: 10.3390/cells6040036 URL |
[71] |
Tran QG, Cho K, Kim U, et al. Enhancement of β-carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii[J]. Bioresour Technol, 2019, 292: 121937.
doi: 10.1016/j.biortech.2019.121937 URL |
[72] |
Li XM, Gu D, You JK, et al. Gamma-aminobutyric acid coupled with copper ion stress stimulates lipid production of green microalga Monoraphidium sp. QLY-1 through multiple mechanisms[J]. Bioresour Technol, 2022, 352: 127091.
doi: 10.1016/j.biortech.2022.127091 URL |
[73] |
Zhang Z, Sun DZ, Cheng KW, et al. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation[J]. Bioresour Technol, 2018, 247: 610-615.
doi: 10.1016/j.biortech.2017.09.133 URL |
[74] |
Qiao TS, Gu D, Zhu LY, et al. Coupling of myo-inositol with salinity regulates ethylene-induced microalgal lipid hyperproduction in molasses wastewater[J]. Sci Total Environ, 2022, 818: 151765.
doi: 10.1016/j.scitotenv.2021.151765 URL |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[4] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[13] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[14] | 周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
[15] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||