生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0247
• 综述与专论 • 下一篇
收稿日期:
2022-03-01
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
于世霞,女,博士,研究方向:植物生殖发育;E-mail: 基金资助:
YU Shi-xia1,2,3(), JIANG Yu-tong1, LIN Wen-hui1,2()
Received:
2022-03-01
Published:
2023-02-26
Online:
2023-03-07
摘要:
种子是高等植物的生殖器官,种子的形成对植物繁衍后代和农作物产量都至关重要。胚珠是种子的前体,胚珠原基起始是种子器官发生的过程,也是植物产生种子的起始步骤。不同植物中胚珠原基起始的方式不同,胚珠原基起始的调控机制研究主要在模式植物拟南芥中进行。拟南芥是多胚珠子房植物,一个果实中含有多个种子,胚珠原基起始对单果实种子数量和种子产量有较大的影响。胚珠原基起始于心皮边缘分生组织(CMM)分化形成的胎座上。已报道一些转录因子、调控蛋白以及重要的植物激素通过影响胎座形成参与调控胚珠原基起始及胚珠数目,最近的研究阐明了拟南芥的多个胚珠在同一胎座上分批发生的现象,并解析了生长素极性运输和信号响应的动态变化决定了胚珠原基异步起始的机制。本文首先介绍了不同植物中CMM和胎座形成过程及其调控因子;接着总结了胚珠原基起始研究的新进展,包括激素调控胚珠原基起始的信号网络,以及多胚珠原基群体起始的规律及其调控机制;最后提出了胚珠原基起始中的未决问题、未来研究方向以及在农业生产上的应用前景。
于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9.
YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation[J]. Biotechnology Bulletin, 2023, 39(2): 1-9.
[1] | Willis K. State of the world’s plants report[R]. Kew: Royal Botanic Gardens, 2017. |
[2] | Yu SX, Zhou LW, Hu LQ, et al. Asynchrony of ovule primordia initiation in Arabidopsis[J]. Development, 2020, 147(24): dev196618. |
[3] |
Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis[J]. Plant Cell, 1990, 2(8): 755-767.
doi: 10.1105/tpc.2.8.755 pmid: 2152125 |
[4] |
Sessions R. Arabidopsis(Brassicaceae)flower development and gynoecium patterning in wild type and Ettin mutants[J]. Am J Bot, 1997, 84(9): 1179.
pmid: 21708672 |
[5] |
Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5: 117.
doi: 10.3389/fpls.2014.00117 pmid: 24723934 |
[6] |
Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell, 1996, 8(2): 155-168.
doi: 10.1105/tpc.8.2.155 pmid: 8742707 |
[7] |
Krizek B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning[J]. Plant Physiol, 2009, 150(4): 1916-1929.
doi: 10.1104/pp.109.141119 pmid: 19542297 |
[8] |
Liu Z, Franks RG, Klink VP. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA[J]. Plant Cell, 2000, 12(10): 1879-1892.
pmid: 11041883 |
[9] |
Azhakanandam S, Nole-Wilson S, Bao F, et al. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development[J]. Plant Physiol, 2008, 146(3): 1165-1181.
doi: 10.1104/pp.107.114751 pmid: 18184731 |
[10] | Wynn AN, Seaman AA, Jones AL, et al. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development[J]. Front Plant Sci, 2014, 5: 130. |
[11] |
Nole-Wilson S, Azhakanandam S, Franks RG. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development[J]. Dev Biol, 2010, 346(2): 181-195.
doi: 10.1016/j.ydbio.2010.07.016 pmid: 20654611 |
[12] |
Pinyopich A, Ditta GS, Savidge B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944): 85-88.
doi: 10.1038/nature01741 URL |
[13] |
Schneitz K, Baker SC, Gasser CS, et al. Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana[J]. Development, 1998, 125(14): 2555-2563.
doi: 10.1242/dev.125.14.2555 pmid: 9636071 |
[14] |
Broadhvest J, Baker SC, Gasser CS. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development[J]. Genetics, 2000, 155(2): 899-907.
doi: 10.1093/genetics/155.2.899 pmid: 10835408 |
[15] | Carlson JB, Lersten NR. Reproductive morphology[M]//Shibles RM, Harper JE, Wilson RF, et al. Soybeans: Improvement, Production, and Uses. 3rd ed. Madison: ASA, CSSA, and SSSA, 2004: 59-95. |
[16] |
Brukhin V, Hernould M, Gonzalez N, et al. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry[J]. Sex Plant Reprod, 2003, 15(6): 311-320.
doi: 10.1007/s00497-003-0167-7 URL |
[17] |
Guo XM, Yu YY, Bai L, et al. Dianthus chinensis L.: the structural difference between vascular bundles in the placenta and ovary wall suggests their different origin[J]. Front Plant Sci, 2017, 8: 1986.
doi: 10.3389/fpls.2017.01986 URL |
[18] |
Buell KM. Developmental morphology in Dianthus. i. structure of the pistil and seed development[J]. Am J Bot, 1952, 39(3): 194-210.
doi: 10.1002/j.1537-2197.1952.tb14264.x URL |
[19] |
Itoh JI, Nonomura KI, Ikeda K, et al. Rice plant development: from zygote to spikelet[J]. Plant Cell Physiol, 2005, 46(1): 23-47.
doi: 10.1093/pcp/pci501 URL |
[20] |
Lopez-Dee ZP, Wittich P, Enrico Pè M, et al. OsMADS13, a novel rice MADS-box gene expressed during ovule development[J]. Dev Genet, 1999, 25(3): 237-244.
doi: 10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L pmid: 10528264 |
[21] |
Sato Y, Hong SK, Tagiri A, et al. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis[J]. Proc Natl Acad Sci USA, 1996, 93(15): 8117-8122.
pmid: 8755613 |
[22] |
Dreni L, Jacchia S, Fornara F, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. Plant J, 2007, 52(4): 690-699.
doi: 10.1111/j.1365-313X.2007.03272.x URL |
[23] |
Zhang JR, Tang W, Huang YL, et al. Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice[J]. J Exp Bot, 2015, 66(1): 99-112.
doi: 10.1093/jxb/eru396 URL |
[24] |
Cucinotta M, di Marzo M, Guazzotti A, et al. Gynoecium size and ovule number are interconnected traits that impact seed yield[J]. J Exp Bot, 2020, 71(9): 2479-2489.
doi: 10.1093/jxb/eraa050 pmid: 32067041 |
[25] |
Qadir M, Wang XF, Shah SRU, et al. Molecular network for regulation of ovule number in plants[J]. Int J Mol Sci, 2021, 22(23): 12965.
doi: 10.3390/ijms222312965 URL |
[26] |
Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502): 306-309.
doi: 10.1126/science.291.5502.306 pmid: 11209081 |
[27] |
Cheng YF, Dai XH, Zhao YD. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis[J]. Genes Dev, 2006, 20(13): 1790-1799.
doi: 10.1101/gad.1415106 URL |
[28] |
Okada K, Ueda J, Komaki MK, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7): 677-684.
doi: 10.2307/3869249 URL |
[29] |
Bencivenga S, Simonini S, Benková E, et al. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. Plant Cell, 2012, 24(7): 2886-2897.
doi: 10.1105/tpc.112.100164 URL |
[30] |
Nemhauser JL, Feldman LJ, Zambryski PC. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis[J]. Development, 2000, 127(18): 3877-3888.
doi: 10.1242/dev.127.18.3877 pmid: 10952886 |
[31] |
Larsson E, Roberts CJ, Claes AR, et al. Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia[J]. Plant Physiol, 2014, 166(4): 1998-2012.
doi: 10.1104/pp.114.245951 pmid: 25332506 |
[32] |
Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. EMBO J, 1998, 17(5): 1405-1411.
doi: 10.1093/emboj/17.5.1405 pmid: 9482737 |
[33] |
Galbiati F, Sinha Roy D, Simonini S, et al. An integrative model of the control of ovule primordia formation[J]. Plant J, 2013, 76(3): 446-455.
doi: 10.1111/tpj.12309 URL |
[34] |
Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
doi: 10.1126/science.1113373 pmid: 15976269 |
[35] |
Bartrina I, Otto E, Strnad M, et al. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(1): 69-80.
doi: 10.1105/tpc.110.079079 URL |
[36] |
Higuchi M, Pischke MS, Mähönen AP, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proc Natl Acad Sci USA, 2004, 101(23): 8821-8826.
doi: 10.1073/pnas.0402887101 URL |
[37] |
Schwarz I, Scheirlinck MT, Otto E, et al. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape[J]. J Exp Bot, 2020, 71(22): 7146-7159.
doi: 10.1093/jxb/eraa419 pmid: 32911544 |
[38] |
Yokoyama A, Yamashino T, Amano YI, et al. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana[J]. Plant Cell Physiol, 2007, 48(1): 84-96.
pmid: 17132632 |
[39] | Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium[J]. PLoS Genet, 2017, 13(4): e1006726. |
[40] |
Zu SH, Jiang YT, Chang JH, et al. Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in Arabidopsis[J]. J Integr Plant Biol, 2022, 64(3): 702-716.
doi: 10.1111/jipb.13197 URL |
[41] |
Cucinotta M, Manrique S, Guazzotti A, et al. Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development[J]. Development, 2016, 143(23): 4419-4424.
pmid: 27737904 |
[42] |
Rashotte AM, Mason MG, Hutchison CE, et al. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway[J]. Proc Natl Acad Sci USA, 2006, 103(29): 11081-11085.
pmid: 16832061 |
[43] |
Huang HY, Jiang WB, Hu YW, et al. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1[J]. Mol Plant, 2013, 6(2): 456-469.
doi: 10.1093/mp/sss070 URL |
[44] | 李不凡, 姜雨彤, 张禹, 等. 甘蓝型油菜的BR响应及BnBZL2基因的功能分析[J]. 植物科学学报, 2018, 36(6): 824-834. |
Li BF, Jiang YT, Zhang Y, et al. Brassinosteroid response of Brassica napus and functional characterization of BnBZL2[J]. Plant Sci J, 2018, 36(6): 824-834. | |
[45] |
Sun TP. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development[J]. Plant Physiol, 2010, 154(2): 567-570.
doi: 10.1104/pp.110.161554 URL |
[46] | Gomez MD, Barro-Trastoy D, Escoms E, et al. Gibberellins negatively modulate ovule number in plants[J]. Development, 2018, 145(13): dev163865. |
[47] |
Gómez MD, Fuster-Almunia C, Ocaña-Cuesta J, et al. RGL2 controls flower development, ovule number and fertility in Arabidopsis[J]. Plant Sci, 2019, 281: 82-92.
doi: 10.1016/j.plantsci.2019.01.014 URL |
[48] |
Barro-Trastoy D, Carrera E, Baños J, et al. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms[J]. Plant J, 2020, 102(5): 1026-1041.
doi: 10.1111/tpj.14684 URL |
[49] |
Hu DZ, Li X, Yang ZY, et al. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean[J]. New Phytol, 2022, 235(2): 502-517.
doi: 10.1111/nph.18153 URL |
[50] |
Osnato M, Lacchini E, Pilatone A, et al. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules[J]. J Exp Bot, 2021, 72(2): 398-414.
doi: 10.1093/jxb/eraa460 pmid: 33035313 |
[51] |
Ishida T, Aida M, Takada S, et al. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana[J]. Plant Cell Physiol, 2000, 41(1): 60-67.
pmid: 10750709 |
[52] |
Takada S, Hibara K, Ishida T, et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation[J]. Development, 2001, 128(7): 1127-1135.
doi: 10.1242/dev.128.7.1127 pmid: 11245578 |
[53] |
Kamiuchi Y, Yamamoto K, Furutani M, et al. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development[J]. Front Plant Sci, 2014, 5: 165.
doi: 10.3389/fpls.2014.00165 pmid: 24817871 |
[54] |
Hou BK, Lim EK, Higgins GS, et al. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[J]. J Biol Chem, 2004, 279(46): 47822-47832.
doi: 10.1074/jbc.M409569200 URL |
[55] |
Cucinotta M, Manrique S, Cuesta C, et al. CUP-SHAPED COTYLEDON1(CUC1)and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis[J]. J Exp Bot, 2018, 69(21): 5169-5176.
doi: 10.1093/jxb/ery281 pmid: 30312436 |
[56] |
Lee DK, Geisler M, Springer PS. LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis[J]. Development, 2009, 136(14): 2423-2432.
doi: 10.1242/dev.031971 URL |
[57] | Gomez MD, Urbez C, Perez-Amador MA, et al. Characterization of constricted fruit(ctf)mutant uncovers a role for AtMYB117/LOF1 in ovule and fruit development in Arabidopsis thaliana[J]. PLoS One, 2011, 6(4): e18760. |
[58] |
Tameshige T, Okamoto S, Lee JS, et al. A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis[J]. Curr Biol, 2016, 26(18): 2478-2485.
doi: S0960-9822(16)30765-5 pmid: 27593376 |
[59] |
Kawamoto N, del Carpio DP, Hofmann A, et al. A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size[J]. Curr Biol, 2020, 30(22): 4352-4361.e4.
doi: 10.1016/j.cub.2020.08.050 URL |
[60] | Hu LQ, Chang JH, Yu SX, et al. PIN3 positively regulates the late initiation of ovule primordia in Arabidopsis thaliana[J]. PLoS Genet, 2022, 18(3): e1010077. |
[61] |
Heisler MG, Ohno C, Das P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Curr Biol, 2005, 15(21): 1899-1911.
doi: 10.1016/j.cub.2005.09.052 pmid: 16271866 |
[62] |
Ikeda K, Sunohara H, Nagato Y. Developmental course of inflorescence and spikelet in rice[J]. Breed Sci, 2004, 54(2): 147-156.
doi: 10.1270/jsbbs.54.147 URL |
[63] |
Wu CY, Trieu A, Radhakrishnan P, et al. Brassinosteroids regulate grain filling in rice[J]. Plant Cell, 2008, 20(8): 2130-2145.
doi: 10.1105/tpc.107.055087 URL |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[5] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[6] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[7] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[8] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[9] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[10] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[11] | 詹冬梅, 朱晨, 周承哲, 黄雪婷, 赖钟雄, 郭玉琼. 茶树Gro/Tup1基因家族鉴定及外源激素和非生物胁迫下表达分析[J]. 生物技术通报, 2021, 37(12): 1-12. |
[12] | 纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4): 131-143. |
[13] | 王丹, 李圣彦, 刘进平, 郎志宏. 玉米萜类合成酶基因tps2的功能及其启动子功能区段鉴定[J]. 生物技术通报, 2020, 36(12): 1-11. |
[14] | 郭宾会, 戴毅, 宋丽. 干旱下植物激素影响作物根系发育的研究进展[J]. 生物技术通报, 2018, 34(7): 48-56. |
[15] | 石佳, 杨丹丹 ,葛慧雯 ,杜京尧 ,梁卫红. 水稻OsMPK15的cDNA克隆和转录水平分析[J]. 生物技术通报, 2018, 34(6): 66-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||