生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 96-102.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0758
收稿日期:
2020-06-22
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
张伟业,男,硕士研究生,研究方向:基因组学与蛋白质组学;E-mail: 基金资助:
ZHANG Wei-ye(), SONG Hao-zhi, LIU Xing-jian, LI Yi-nü, ZHANG Zhi-fang()
Received:
2020-06-22
Published:
2021-02-26
Online:
2021-02-26
摘要:
口蹄疫是由口蹄疫病毒引起的世界上最重要的畜牧疾病之一,严重影响世界畜牧业的发展,而疫苗免疫仍然是对疫情预防和控制的最有效手段。铁蛋白具有自组装和生物修饰的特性,在纳米疫苗等领域具有广阔的应用前景。选用O型口蹄疫病毒的vp1基因和幽门螺杆菌铁蛋白基因,通过融合PCR将vp1基因构建到铁蛋白亚基基因前端,在大肠杆菌中表达后通过His标签进行镍柱亲和层析纯化。将纯化好的重组蛋白进行Western blotting检测、质谱分析和透射电镜观察,发现重组蛋白VP1-Ferritin在大肠杆菌中获得表达,并可自组装成纳米颗粒。
张伟业, 宋浩志, 刘兴健, 李轶女, 张志芳. 铁蛋白与口蹄疫病毒VP1在大肠杆菌中融合表达及纳米颗粒自组装[J]. 生物技术通报, 2021, 37(2): 96-102.
ZHANG Wei-ye, SONG Hao-zhi, LIU Xing-jian, LI Yi-nü, ZHANG Zhi-fang. Fusion Expression of Ferritin and Foot-and-Mouth Disease Virus VP1 in Escherichia coli and Self-assembly of Nanoparticles[J]. Biotechnology Bulletin, 2021, 37(2): 96-102.
引物名称 | 引物序列(5'-3') |
---|---|
F1 | CGGGATCCAACATGACCACCTCCACAGGTGAGTC |
R1 | GCGTCGACGAATTCTTAGCTCTTGCGGGACTTGGCGATG |
F2 | CCTGTGAAACAGTTGTTG TCCGGTGGCGACATCATCAAG |
R2 | CTTGATGATGTCGCCACCGGACAACAACTGTTTCACAGG |
表1 融合PCR扩增VP1-Ferritin用引物
引物名称 | 引物序列(5'-3') |
---|---|
F1 | CGGGATCCAACATGACCACCTCCACAGGTGAGTC |
R1 | GCGTCGACGAATTCTTAGCTCTTGCGGGACTTGGCGATG |
F2 | CCTGTGAAACAGTTGTTG TCCGGTGGCGACATCATCAAG |
R2 | CTTGATGATGTCGCCACCGGACAACAACTGTTTCACAGG |
Master Protein Accession | Description | Coverage/% | # Peptides | # PSMs | # Unique Peptides | # AAs | MW/kD | calc. pI | Score Sequest HT:Sequest HT | Abundances | # Protein Groups |
---|---|---|---|---|---|---|---|---|---|---|---|
pET-28a | VP1-Ferritin | 78 | 42 | 193 | 30 | 415 | 46.3 | 7.28 | 438.62 | 65020355405 | 1 |
表2 重组蛋白His-VP1-Ferritin的质谱鉴定结果
Master Protein Accession | Description | Coverage/% | # Peptides | # PSMs | # Unique Peptides | # AAs | MW/kD | calc. pI | Score Sequest HT:Sequest HT | Abundances | # Protein Groups |
---|---|---|---|---|---|---|---|---|---|---|---|
pET-28a | VP1-Ferritin | 78 | 42 | 193 | 30 | 415 | 46.3 | 7.28 | 438.62 | 65020355405 | 1 |
[1] | 黄虹. 猪口蹄疫的流行与防控[J]. 今日畜牧兽医, 2020,36(3):34. |
Huang H. The prevalence and prevention of swine foot-and-mouth disease[J]. Today Animal Husbandry and Veterinary Medicine, 2020,36(3):34. | |
[2] | 罗长保, 鱼海琼, 林志雄. 应用荧光RT-PCR技术检测口蹄疫病毒[J]. 中国兽医杂志, 2003,39(12):31. |
Luo CB, Yu HQ, Lin ZX. Detection of foot-and-mouth disease virus by fluorescent RT-PCR technology[J]. Chinese Journal of Veterinary Medicine, 2003,39(12):31. | |
[3] | Verma AK, Kumar A, Mahima, et al. Epidemiology and diagnosis of foot-and-mouth disease:A review[J]. Indian J Anim Sci, 2012,82(6):543-551. |
[4] |
Grubman MJ, Baxt B. Foot-and-mouth disease[J]. Clin Microbiol Rev, 2004,17(2):465-493.
doi: 10.1128/cmr.17.2.465-493.2004 URL pmid: 15084510 |
[5] |
Pelkmans L, Helenius A. Insider information:What viruses tell us about endocytosis[J]. Curr Opin Cell Biol, 2003,15(4):414-422.
doi: 10.1016/s0955-0674(03)00081-4 URL pmid: 12892781 |
[6] |
Knowles NJ, Samuel AR, Davies PR, et al. Outbreak of foot-and-mouth disease virus serotype O in the UK caused by a pandemic strain[J]. Vet Rec, 2001,148(9):258-259.
URL pmid: 11292084 |
[7] |
Knowles NJ, Samuel AR. Molecular epidemiology of foot-and-mouth disease virus[J]. Virus Res, 2003,91(1):65-80.
doi: 10.1016/s0168-1702(02)00260-5 URL pmid: 12527438 |
[8] |
Paton DJ, Sumption KJ, Charleston B. Options for control of foot-and-mouth disease:Knowledge, capability and policy[J]. Philos Trans R Soc Lond B Biol Sci, 2009,364(1530):2657-2667.
URL pmid: 19687036 |
[9] | 张晓凤. 口蹄疫病毒的基因分型[J]. 畜牧与饲料科学, 2006(2):30-32. |
Zhang XF. Genotyping of foot-and-mouth disease virus[J]. Anim Husb Feed Sci, 2006(2):30-32. | |
[10] |
Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene[J]. Nat Biotechnol, 1999,17(3):282-286.
doi: 10.1038/7029 URL pmid: 10096297 |
[11] |
Yamashita I, Iwahori K, Kumagai S. Ferritin in the field of nanodevices[J]. Biochim Biophys Acta, 2010,1800(8):846-857.
doi: 10.1016/j.bbagen.2010.03.005 URL pmid: 20227466 |
[12] |
Zeng Q, Reuther R, Oxsher J, et al. Characterization of horse spleen apoferritin reactive lysines by maldi-tof mass spectrometry combined with enzymatic digestion[J]. Bioorg Chem, 2008,36(5):255-260.
doi: 10.1016/j.bioorg.2008.06.001 URL pmid: 18667223 |
[13] |
Niemeyer CM. Nanoparticles, proteins, and nucleic acids:Biotechnology meets materials science[J]. Angew Chem Int Ed Engl, 2001,40(22):4128-4158.
doi: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S URL pmid: 29712109 |
[14] |
Kang YJ, Park DC, Shin HH, et al. Incorporation of thrombin cleavage peptide into a protein cage for constructing a protease-responsive multifunctional delivery nanoplatform[J]. Biomacromolecules, 2012,13(12):4057-4064.
doi: 10.1021/bm301339s URL pmid: 23163509 |
[15] | 赵启祖, 谢庆阁. 家畜口蹄疫疫苗简介[J]. 中国兽医科技, 2000,30(6):43-44. |
Zhao QZ, Xie QG. Introduction to livestock foot-and-mouth disease vaccine[J]. Chinese Journal of Veterinary Science and Tech-nology, 2000,30(6):43-44. | |
[16] |
Kanekiyo M, Wei CJ, Yassine HM, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies[J]. Nature, 2013,499(7456):102-106.
doi: 10.1038/nature12202 URL pmid: 23698367 |
[17] |
Dhanesh VV, Hosamani M, Basagoudanavar SH, et al. Immunogenicity and protective efficacy of 3a truncated negative marker foot-and-mouth disease virus serotype a vaccine[J]. Appl Microbiol Biotechnol, 2020,104(6):2589-2602.
doi: 10.1007/s00253-020-10370-z URL pmid: 32002597 |
[18] |
Domingo E, Holland JJ. RNA virus mutations and fitness for survival[J]. Annu Rev Microbiol, 1997,51:151-178.
doi: 10.1146/annurev.micro.51.1.151 URL pmid: 9343347 |
[19] |
Saiz M, Nunez JI, Jimenez-Clavero MA, et al. Foot-and-mouth disease virus:Biology and prospects for disease control[J]. Microbes Infect, 2002,4(11):1183-1192.
doi: 10.1016/s1286-4579(02)01644-1 URL pmid: 12361919 |
[20] |
Brown F. The history of research in foot-and-mouth disease[J]. Virus Res, 2003,91(1):3-7.
doi: 10.1016/s0168-1702(02)00268-x URL pmid: 12527434 |
[21] |
Nair SP, Sen AK. A comparative study of the immune responses of sheep against foot-and-mouth disease virus types asia-1 and o peg-concentrated aluminium hydroxide gel and oil-adjuvanted vaccines[J]. Vaccine, 1993,11(7):782-786.
doi: 10.1016/0264-410x(93)90266-z URL pmid: 8393608 |
[22] |
李光金, 严维耀, 徐泉兴, 等. 以猪IgG重链恒定区为抗原载体的抗口蹄疫病毒DNA疫苗的研制[J]. 生物工程学报, 2001,17(3):322-324.
pmid: 11517610 |
Li GJ, Yan WY, Xu QX, et al. Study on the DNA vaccine against foot-and-mouth disease virus using the heavy chain constant region of swine IgG as the carrier for peptide epitopes[J]. Chinese Journal of Biotechnology, 2001,17(3):322-324.
URL pmid: 11517610 |
|
[23] |
Song H, Wang Z, Zheng D, et al. A novel mucosal vaccine against foot-and-mouth disease virus induces protection in mice and swine[J]. Biotechnol Lett, 2005,27(21):1669-1674.
doi: 10.1007/s10529-005-2727-4 URL pmid: 16247672 |
[24] |
Ma MX, Jin NY, Liu HJ, et al. Immunogenicity of plasmids encoding P12A and 3C of FMDV and swine IL-18[J]. Antiviral Res, 2007,76(1):59-67.
doi: 10.1016/j.antiviral.2007.05.003 URL |
[25] |
Yao Q, Qian P, Huang Q, et al. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs[J]. J Virol Methods, 2008,147(1):143-150.
doi: 10.1016/j.jviromet.2007.08.027 URL pmid: 17963851 |
[26] |
Kupriianova MA, Zhmak MN, Koroev DO, et al. Synthetic peptide designs based on immunoactive fragments of the VP1 protein of the foot-and-mouth disease virus strain A22[J]. Bioorg Khim, 2000,26(12):926-932.
URL pmid: 11195591 |
[27] |
Jacob SI, Khogeer B, Bampos N, et al. Development and application of synthetic affinity ligands for the purification of ferritin-based influenza antigens[J]. Bioconjug Chem, 2017,28(7):1931-1943.
doi: 10.1021/acs.bioconjchem.7b00253 URL pmid: 28558204 |
[28] |
Lopez-Sagaseta J, Malito E, Rappuoli R, et al. Self-assembling protein nanoparticles in the design of vaccines[J]. Comput Struct Biotechnol J, 2016,14:58-68.
doi: 10.1016/j.csbj.2015.11.001 URL pmid: 26862374 |
[29] |
Pishraft Sabet L, Taheri T, Memarnejadian A, et al. Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and ND5B HCV epitopes in BALB/c mice[J]. Hepat Mon, 2014,14(10):e22215.
URL pmid: 25419219 |
[30] |
Li Z, Cui K, Huang K, et al. Self-assembling rotavirus VP6 nanoparticle vaccines expressed in escherichia coli elicit systemic and mucosal responses in mice[J]. Protein Pept Lett, 2019,26(12):904-909.
doi: 10.2174/0929866526666190820161328 URL pmid: 31429685 |
[31] | 马静云, 陈峰, 曹永长, 等. 口蹄疫病毒VP1基因的原核表达及免疫原性检测[J]. 中国兽医科技, 2004,34(3):17-20. |
Ma JY, Chen F, Cao YC, et al. Prokaryotic expression of VP1 gene of foot-and-mouth disease virus and detection of expression product immunogenicity[J]. Chinese Journal of Veterinary Science and Technology, 2004,34(3):17-20. | |
[32] |
Cho KJ, Shin HJ, Lee JH, et al. The crystal structure of ferritin from helicobacter pylori reveals unusual conformational changes for iron uptake[J]. J Mol Biol, 2009,390(1):83-98.
doi: 10.1016/j.jmb.2009.04.078 URL pmid: 19427319 |
[1] | 张漫漫, 何腾霞, 丁晨雨, 陈梦苹, 吴启凤. 生物脱氮中工程纳米颗粒的毒害作用及减毒措施的研究进展[J]. 生物技术通报, 2022, 38(2): 227-236. |
[2] | 高启禹, 徐光翠, 崔彩霞, 张文博. 微生物铁蛋白的研究进展[J]. 生物技术通报, 2022, 38(1): 269-277. |
[3] | 王蕾蕾, 董莲华, 杨靖亚, 王霞. 基于纳米颗粒的基因突变检测方法研究进展[J]. 生物技术通报, 2021, 37(3): 241-251. |
[4] | 陈敏, 刘旭平, 赵亮. 支持高密度BHK-21细胞培养和高产FMD病毒的无血清培养基开发与优化[J]. 生物技术通报, 2020, 36(10): 62-71. |
[5] | 裴杰,褚敏,包鹏甲,阎萍,郭宪. 乳铁蛋白抗菌机理研究进展[J]. 生物技术通报, 2017, 33(9): 56-63. |
[6] | 刘友勋, 王耀坤, 闫明阳, 黄娟. 磁性Fe3O4/聚苯胺纳米纤维的制备及其固定漆酶研究[J]. 生物技术通报, 2017, 33(3): 205-212. |
[7] | 吴小丽, 刘盈盈, 江世杰, 陈云, 刘小利, 汪雨舟, 平淑珍, 王劲. 铁蛋白DrfE对耐辐射异常球菌抗氧化酶活性的影响[J]. 生物技术通报, 2017, 33(2): 164-171. |
[8] | 江翱, 李伟. 黄鳝转铁蛋白受体1基因的克隆及表达分析[J]. 生物技术通报, 2015, 31(7): 132-137. |
[9] | 刘文, 贾义华, 方丽, 刘长爱, 陈浩, 路凯敏, 胡巍. 大肠杆菌DPS表达、体外自组装及抗氧化作用研究[J]. 生物技术通报, 2015, 31(11): 202-206. |
[10] | 李志鹏,刘庆友,石德顺,. 铁蛋白纳米颗粒应用于生物医疗领域的研究进展[J]. 生物技术通报, 2015, 31(10): 38-47. |
[11] | 李晔, 陈蕾, 周君, 李成华, 苏秀榕, 李太武. 浙江枝吻纽虫肌动蛋白基因的原核表达及其重组蛋白的体外自组装[J]. 生物技术通报, 2013, 0(8): 113-118. |
[12] | 卢艳敏;崔海信;崔金辉;李瑶;. 磁性纳米颗粒作为基因转染载体的研究[J]. , 2012, 0(08): 199-204. |
[13] | 杨彬;兰喜;李宝玉;殷相平;李学瑞;柳纪省;. 牛α-IFN及FMDV P12A3C双表达载体的构建及其在BHK-21细胞中的表达[J]. , 2012, 0(02): 80-84. |
[14] | 刘明;刘航;柳纪省;. A型口蹄疫病毒VP0基因的克隆及原核表达[J]. , 2012, 0(01): 104-107. |
[15] | 王继华;信爱国;朱明旺;苗海生;胡骑;廖德芳;李乐;李华春;. 链特异性RT-PCR方法检测口蹄疫病毒负链RNA[J]. , 2012, 0(01): 130-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||