生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 103-110.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0743
陈杰豪1,2(), 缪玉佳2, 梁超2, 陶雨2, 欧阳萍2, 汪开毓2, 耿毅2, 石存斌1, 李宁求1()
收稿日期:
2020-06-17
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
陈杰豪,男,硕士研究生,研究方向:水生动物疾病学;E-mail: 基金资助:
CHEN Jie-hao1,2(), MIAO Yu-jia2, LIANG Chao2, TAO Yu2, OUYANG Ping2, WANG Kai-yu2, GENG Yi2, SHI Cun-bin1, LI Ning-qiu1()
Received:
2020-06-17
Published:
2021-02-26
Online:
2021-02-26
摘要:
旨为探究山姜素对耐药性嗜水气单胞菌的体外抑菌效果及其作用机制。通过测定山姜素对嗜水气单胞菌生长、细菌形态、电导率、乳酸脱氢酶(LDH)、蛋白质代谢和DNA的影响,研究山姜素对耐药性嗜水气单胞菌的抑菌机制。山姜素对5株鱼源耐药性嗜水气单胞菌的最小抑菌浓度(MIC)和最小杀菌浓度(MBC)分别为128-256 μg/mL和512-1 024 μg/mL。与对照组相比,2MIC山姜素作用于嗜水气单胞菌CW株8 h、16 h后,菌体皱缩,细胞壁和细胞膜破损,细胞质丢失,内部空化;作用2 h后,菌悬液电导率、乳酸脱氢酶含量、DNA外渗量分别增长了3.97%、26.09%和10.50 μg/mL;作用2、4和8 h后,菌悬液核酸荧光强度和密度呈现随时间降低的趋势。山姜素对嗜水气单胞菌的体外抑菌机制为损伤菌体的细胞壁、增加细胞膜的通透性来抑制其生长繁殖。
陈杰豪, 缪玉佳, 梁超, 陶雨, 欧阳萍, 汪开毓, 耿毅, 石存斌, 李宁求. 山姜素对鱼源耐药性嗜水气单胞菌体外抗菌作用的研究[J]. 生物技术通报, 2021, 37(2): 103-110.
CHEN Jie-hao, MIAO Yu-jia, LIANG Chao, TAO Yu, OUYANG Ping, WANG Kai-yu, GENG Yi, SHI Cun-bin, LI Ning-qiu. Study on the Antibacterial Mechanism of Alpinetin Against Fish-derived Drug-resistant Aeromonas hydrophila in vitro[J]. Biotechnology Bulletin, 2021, 37(2): 103-110.
嗜水气单胞菌名称 | 来源 | 耐药性* | 山姜素 | |
---|---|---|---|---|
MIC/(μg·mL-1) | MBC/(μg·mL-1) | |||
CW | 斑点叉尾鮰 | GEN,NEO,TE,DO,AML | 128 | 256 |
1G | 鲫鱼 | ROX,RFP,AML | 256 | 512 |
Ah | 长吻鮠 | GEM,FFC,DO,AML | 256 | 1024 |
WZ1 | 黄颡鱼 | ROX,RFP,AML | 128 | 512 |
S1D | 鳜鱼 | GEM,AML | 256 | 512 |
表1 山姜素对5株不同鱼源嗜水气单胞菌的MIC值和MBC值
嗜水气单胞菌名称 | 来源 | 耐药性* | 山姜素 | |
---|---|---|---|---|
MIC/(μg·mL-1) | MBC/(μg·mL-1) | |||
CW | 斑点叉尾鮰 | GEN,NEO,TE,DO,AML | 128 | 256 |
1G | 鲫鱼 | ROX,RFP,AML | 256 | 512 |
Ah | 长吻鮠 | GEM,FFC,DO,AML | 256 | 1024 |
WZ1 | 黄颡鱼 | ROX,RFP,AML | 128 | 512 |
S1D | 鳜鱼 | GEM,AML | 256 | 512 |
图4 山姜素对菌株CW可溶性蛋白质含量的影响 M:标准分子量蛋白Marker;1:4 h对照组;2:4 h 256 μg/mL山姜素处理组;3:8 h对照组;4:8 h 256 μg/mL山姜素处理组;5:16 h对照组;6:16 h 256 μg/mL山姜素处理组;7:24 h 对照组;8:24 h 256 μg/mL山姜素处理组
[1] |
Parker JL, Shaw JG. Aeromonas spp. clinical microbiology and disease[J]. Journal of Infection, 2011,62(2):109-118.
doi: 10.1016/j.jinf.2010.12.003 URL |
[2] |
Lategan MJ, Gibson LF. Antagonistic activity of Aeromonas media strain A199 against Saprolegnia sp. an opportunistic pathogen of the eel, Anguilla australis Richardson[J]. Journal of Fish Diseases, 2003,26(3):147-153.
URL pmid: 12962224 |
[3] |
Mastan SA, Qureshi TA. Role of bacteria in the epizootic ulcerative syndrome(EUS)of fishes[J]. Journal of Environmental Biology, 2001,22(3):187-192.
URL pmid: 12017259 |
[4] |
Pridgeon JW, Klesius PH. Molecular identification and virulence of three Aeromonas hydrophila isolates cultured from infected channel catfish during a disease outbreak in west Alabama(USA)in 2009[J]. Diseases of Aquatic Organisms, 2011,94(3):249-253.
doi: 10.3354/dao02332 URL pmid: 21790073 |
[5] | 王春瑞. 嗜水气单胞菌的分子流行病学调查及其两种分型方法的研究[D]. 宁波:宁波大学, 2011. |
Wang CR. The study of molecular epidemiological surveillance and two typing methods of A. hydrophila[D]. Ningbo:Ningbo University, 2011. | |
[6] | Devi KR, Srinivasan R, Kannappan A, et al. In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila[J]. Biofouling, 2016,32(9-10):1171-1183. |
[7] | Bargui H, Marzouk M, Benhadj A, et al. Aeromonas spp. Human infection:Retrospective study in the region of sousse, 2011 - 2015[J]. La Tunisie Médicale, 2017,95(4):257-261. |
[8] | Stratev D, Odeyemi AO. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources:a mini-review[J]. Journal of Infection and Public Health, 2015,9(5):535-544. |
[9] |
Khor WC, Puah SM, Koh TH, et al. Comparison of clinical isolates of Aeromonas from Singapore and Malaysia with regard to molecular identification, virulence, and antimicrobial profiles[J]. Microbial Drug Resistance, 2018,24(4):469-478.
doi: 10.1089/mdr.2017.0083 URL pmid: 29461928 |
[10] |
De Silva BCJ, Hossain S, Dahanayake PS, et al. Aeromonas spp. from marketed Yesso scallop(Patinopecten yessoensis):molecular characterization, phylogenetic analysis, virulence properties and antimicrobial susceptibility[J]. Journal of Applied Microbiology, 2019,126(1):288-299.
URL pmid: 30218592 |
[11] | Hossain S, De Silva BCJ, Dahanayake PS, et al. Characterization of virulence properties and multi-drug resistance profiles in motile Aeromonas spp. isolated from zebrafish(Danio rerio)[J]. Letters in Applied Microbiology, 2018,67(6):598-605. |
[12] | Barbieri R, Coppo E, Marchese A, et al. Phytochemicals for human disease:An update on plant-derived compounds antibacterial activity[J]. Microbiological Research, 2017,196:44-68. |
[13] | 乔春峰, 徐珞珊, 王峥涛, 等. 山姜素和豆蔻明的研究概况[J]. 中国野生植物资源, 2001,20(6):11-13, 15. |
Qiao CF, Xu LS, Wang ZT, et al. Progress in studies of alpinetin and cardamonin[J]. Chinese Wild Plant Resources, 2001,20(6):11-13, 15. | |
[14] | 霍美霞. 山姜素体外体内抗炎作用研究[D]. 长春:吉林大学, 2013. |
Huo MX. The anti-inflammatory effects of alpinetin in vitro and vivo[D]. Changchun:Jilin University, 2011. | |
[15] | 李元圆, 杨莉, 王长虹, 等. 草豆蔻化学成分及体外抗肿瘤作用研究[J]. 上海中医药大学学报, 2010,24(1):72-75. |
Li YY, Yang L, Wang CH, et al. Chemical constituents from seeds of Alpinia katsumadai Hayata and their anti-tumor activity[J]. Journal of Shanghai University of Traditional Chinese Medicine, 2010,24(1):72-75. | |
[16] | 刘友花, 林立东, 叶育石, 等. 升振山姜茎的黄酮类成分[J]. 热带亚热带植物学报, 2017,25(5):517-522. |
Liu YH, Lin LD, Ye YS, et al. Flavonoids from the stems of Alpinia hainanensis ‘Shengzhen’[J]. Journal of Tropical and Subtropical Botany, 2017,25(5):517-522. | |
[17] | Arendrup MC, Prakash A, Meletiadis J, et al. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values[J]. Antimicrob Agents Chemother, 2017,61(6):485-517. |
[18] | Wilson RE, Hill RLR, Chalker VJ, et al. Antibiotic susceptibility of Legionella pneumophila strains isolated in England and Wales 2007-17[J]. Journal of Antimicrobial Chemotherapy, 2018,73(10):2757-2761. |
[19] |
Xu L, Chou SL, Wang JJ, et al. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides[J]. Amino Acids, 2015,47(11):2385-2397.
doi: 10.1007/s00726-015-2029-7 URL pmid: 26088720 |
[20] |
He N, Wang PQ, Wang PY, et al. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica(Linn)Lam[J]. BMC Complementary & Alternative Medicine, 2018,18(1):261.
URL pmid: 30257662 |
[21] |
Ma CY, He N, Zhao YY, et al. Antimicrobial mechanism of hydroquinone[J]. Applied Biochemistry & Biotechnology, 2019,189(4):1291-1303.
doi: 10.1007/s12010-019-03067-1 URL pmid: 31254228 |
[22] | Al-Subol I, Youssef N. Prevalence of CTX-M, TEM and SHV β-lactamases in clinical isolates of Escherichia Coli and Klebsiella Pneumoniae isolated from Aleppo university hospitals, Aleppo, Syria[J]. Revista Española De Cardiología, 2015,10(2):399-400. |
[23] | Bendali F, Gaillard-Martinie B, Hebraud M, et al. Kinetic of production and mode of action of the Lactobacillus paracasei subsp. Paracasei anti-listerial bacteriocin, an Algerian isolate[J]. Lwt Food Science & Technology, 2008,41(10):1784-1792. |
[24] | 张冠楠. 茴香醛抗金黄色葡萄球菌的活性及机制研究[D]. 长春:吉林大学, 2016. |
Zhang GN. Study on the activity and mechanism of p-Anisaldehyde against Staphylococcus aureus[D]. Changchun:Jilin University, 2016. | |
[25] | Yu SC, Wang Y, Li X, et al. The factors affecting the reproducibility of micro-volume DNA mass quantification in Nanodrop 2000 spectrophotometer[J]. Optik- International Journal for Light and Electron Optics, 2017,145:555-560. |
[26] |
Zhang YT, Feng RZ, Li LX, et al. The antibacterial mechanism of Terpinen-4-ol against Streptococcus agalactiae[J]. Current Microbiology, 2018,75(9):1214-1220.
doi: 10.1007/s00284-018-1512-2 URL pmid: 29804206 |
[27] | 吴倩, 闫芳, 刘风波. 嗜水气单胞菌的研究进展[J]. 畜禽业, 2010,2:28-31. |
Wu Q, Yan F, Liu FB, et al. Research progresss on Aeromonas hydrophila[J]. Livestock and Poultry Industry, 2010,2:28-31. | |
[28] | 陈怀青. 气单胞菌研究进展[J]. 鱼类病害研究, 1997,19(3):18-33. |
Chen HQ. Research progresss on Aeromonas spp[J]. Fish Disease Research, 1997,19(3):18-33. | |
[29] | 曹红峰, 黄文芳, 宋靖芳. 中草药防治鱼病研究进展[J]. 海洋科学, 2006,30(4):83-87. |
Cao HF, Huang WF, Song JF. A review of the prevention and control of fish diseases by use of traditional Chinese herbal medicine[J]. Marine Sciences, 2006,30(4):83-87. | |
[30] | 文国樑, 于明超, 李卓佳, 等. 中草药饲料添加剂在水产养殖中的应用研究[J]. 广东农业科学, 2011,38(24):114-116, 119. |
Wen GL, Yu MC, Li ZJ, et al. Study on the use of herbal feed additives in aquaculture[J]. Guangdong Agricultural Sciences, 2011,38(24):114-116, 119. | |
[31] | 孙健, 吴国娟. 抗菌中药的作用机理研究进展[J]. 中国兽医杂志, 2007,43(2):42-43. |
Sun J, Wu GJ. Research progress in the mechanism of antibacterial medicine[J]. Chinese Journal of Veterinary Medicine, 2007,43(2):42-43. | |
[32] | Henrik S, Jeff E. Bacterial membranes:structure, domains, and function[J]. Annual Review of Microbiology, 2017,71(1):annurev-micro-102215-095630. |
[33] |
Sheikh RA, Shreaz S, Raja V, et al. Impaired ergosterol biosynjournal mediated fungicidal activity of Co(II)complex with ligand derived from cinnamaldehyde[J]. Chemico-Biological Interactions, 2016,247:64-74.
doi: 10.1016/j.cbi.2016.01.015 URL pmid: 26806515 |
[34] | 袁中伟, 陈志英, 甘盈盈, 等. 百里香酚对耐甲氧西林金黄色葡萄球菌的抑菌作用机制[J]. 华南农业大学学报, 2018,39(6):18-23. |
Yuan ZW, Chen ZY, Gan YY, et al. Antibacterial mechanism of thymol to methicillin-resistant Staphylococcus aureus[J]. Journal of South China Agricultural University, 2018,39(6):18-23. | |
[35] | 甘盈盈, 袁中伟, 张天翼, 等. 香芹酚对耐甲氧西林金黄色葡萄球菌(USA300)抑菌机制的研究[J]. 四川农业大学学报, 2019,37(2):276-282. |
Gan YY, Yuan ZW, Zhang TY, et al. Antibacterial mechanism of carvacrol against methicillin-resistant Staphylococcus aureus(USA300)[J]. Journal of Sichuan Agricultural University, 2019,37(2):276-282. | |
[36] |
Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity[J]. Science, 2008,319(5870):1672-1676.
URL pmid: 18356528 |
[37] |
Kapuscinski J. DAPI:a DNA-specific fluorescent probe[J]. Biotechnic and Histochemistry, 2009,70(5):220-233.
URL pmid: 8580206 |
[38] |
Zink D, Sadoni N, Stelzer E. Visualizing chromatin and chromosomes in living cells[J]. Methods, 2003,29(1):42-50.
doi: 10.1016/s1046-2023(02)00289-x URL pmid: 12543070 |
[1] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[2] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[3] | 姚近东, 汤华妹, 杨文霄, 张丽珊, 林向民. 恩诺沙星胁迫下嗜水气单胞菌的比较蛋白质组学研究[J]. 生物技术通报, 2023, 39(4): 288-296. |
[4] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[5] | 高苏, 马婕馨, 刘警鞠, 赵国柱. 虫草素的抑菌活性及机理研究[J]. 生物技术通报, 2021, 37(4): 137-144. |
[6] | 张丽珊, 孙莉娜, 林镇平, 林向民. 嗜水气单胞菌非核糖体肽合成酶基因功能研究[J]. 生物技术通报, 2020, 36(4): 93-99. |
[7] | 李小艳, 李泽琦, 汪玉倩, 于晶, 林镇平, 林向民. 嗜水气单胞菌acrA缺失菌株的构建及其生理功能的测定[J]. 生物技术通报, 2020, 36(11): 63-69. |
[8] | 高云山, 刘丹丹, 徐俊林, 桑雨浓, 梁夏夏, 刘建欣, 王文彬. 嗜水气单胞菌孔蛋白OmpF重组表达及其免疫原性 分析[J]. 生物技术通报, 2019, 35(9): 234-243. |
[9] | 毛然然, 李小艳, 武瑶, 张丽珊, 林镇平, 林向民. 嗜水气单胞菌OprM蛋白的克隆表达与免疫保护作用评价[J]. 生物技术通报, 2019, 35(9): 244-248. |
[10] | 黄放,林向民. 嗜水气单胞菌bamA、bamB、bamD突变株的构建及其对外膜蛋白转运的影响[J]. 生物技术通报, 2018, 34(5): 148-153. |
[11] | 林金杏, 杨迟, 冯丽萍, 胡建华. 斑马鱼嗜水气单胞菌的鉴定和人工感染组织病理学研究[J]. 生物技术通报, 2016, 32(9): 239-245. |
[12] | 陈哲, 黄静, 赵佳, 王长彪, 梁宏. 解淀粉芽孢杆菌抑菌机制的研究进展[J]. 生物技术通报, 2015, 31(6): 37-41. |
[13] | 凌空,丁诗华,金娟,吴兴镇,. 一种检测大鲵致病性嗜水气单胞菌的四重PCR法[J]. 生物技术通报, 2014, 0(9): 201-207. |
[14] | 李雪, 胡秀彩, 兰云, 沈晓静, 吕爱军, 朱爱华. 嗜水气单胞菌转录调控蛋白基因的克隆与序列分析[J]. 生物技术通报, 2014, 0(7): 168-172. |
[15] | 张荣岭,王瑞明,李丕武. 一株氨基半乳糖产生菌的筛选鉴定及培养条件研究[J]. 生物技术通报, 2013, 0(7): 125-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||