生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 147-153.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1113
白新峰1(), 贾爱荣1(
), 刘雪1, 张绵松1, 崔婷婷1, 刘德亭2, 刘昌衡1
收稿日期:
2020-09-02
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
白新峰,男,博士,研究方向:微生物学;E-mail: 基金资助:
BAI Xin-feng1(), JIA Ai-rong1(
), LIU Xue1, ZHANG Mian-song1, CUI Ting-ting1, LIU De-ting2, LIU Chang-heng1
Received:
2020-09-02
Published:
2021-06-26
Online:
2021-07-08
摘要:
为促进藻类在海参养殖中的应用,筛选藻类海藻多糖降解菌。采用藻粉诱导的方法,促进海参肠道中藻类多糖降解菌的富集,分别以褐藻胶和卡拉胶为唯一碳源,进行褐藻胶和卡拉胶降解菌的筛选。采用DNS法测定菌体降解褐藻胶和卡拉胶的活性,通过16S rDNA测序结合生理生化指标检测对菌种进行种属鉴定,同时检测菌株的生长特性、降解饵料其他主要成分的活性和生物安全性。结果筛选到两株高活性海藻多糖降解菌,两菌株属于芽孢杆菌,菌体生长迅速,具有较强的酸碱和盐浓度适应能力,并且对海参健康均没有明显影响。褐藻胶降解菌HZ-1与Bacillus altitudinis相似性最高,褐藻胶降解酶活力为43.2 U/mL,具有淀粉酶、纤维素酶和蛋白酶活性。卡拉胶降解菌KL-6与Bacillus megaterium相似性最高,卡拉胶降解酶活力为1.45 U/ mL,具有淀粉酶和蛋白酶活性。筛选到两株具有海藻多糖降解能力的芽孢杆菌,两菌株生长速度快、酶活力高,可用作养殖益生菌或用于藻类饲料加工。
白新峰, 贾爱荣, 刘雪, 张绵松, 崔婷婷, 刘德亭, 刘昌衡. 海参肠道内容物中海藻多糖降解菌的筛选及鉴定[J]. 生物技术通报, 2021, 37(6): 147-153.
BAI Xin-feng, JIA Ai-rong, LIU Xue, ZHANG Mian-song, CUI Ting-ting, LIU De-ting, LIU Chang-heng. Screening and Identification of Algal Polysaccharide-degrading Bacteria in the Intestinal Contents of Sea Cucumber[J]. Biotechnology Bulletin, 2021, 37(6): 147-153.
图1 菌株部分生物学表型 A:褐藻胶降解活性;B:卡拉胶降解活性;C:HZ-1 菌落形态;D:KL-6菌落形态;E:HZ-1 菌体形态;F:KL-6 菌体形态
Fig.1 Some biological phenotypes of the strains A:Degradation activity of alginate. B:Degradation activity of carrageenan. C:Colony morphology of Hz-1. D:Colony morphology of KL-6. E:Cell morphology of Hz-1. F:Cell morphology of KL-6
检测项目Test item | HZ-1 | KL-6 | 检测项目Test item | HZ-1 | KL-6 | |
---|---|---|---|---|---|---|
运动 | + | + | 葡萄糖 Glucose | + | + | |
革兰氏染色 Gram Staining | 阳 Positive | 阳 Positive | 果糖 Fructose | + | + | |
形状 Shape | 杆状 Rod | 杆状 Rod | 木糖 Xylose | + | + | |
形成芽孢 Sporulation | + | + | 甘露糖 Mannose | + | + | |
VP实验 VP test | - | - | 阿拉伯糖 arabinose | - | + | |
2% NaCl生长 Grown in 2% NaCL | + | + | 蛋白酶 Protease activity | + | + | |
7% NaCl生长 Grown in 7% NaCL | + | + | 脂酶 Lipase enzyme activity | - | - | |
10% NaCl生长 Grown in 10% NaCL | +/- | - | 淀粉酶 Amylase activity | + | + | |
柠檬酸盐利用 Utilization of citrate | + | + | 接触酶 Contact enzyme activity | + | + | |
硝酸盐还原 Nitrate reduction | + | + |
表1 菌株HZ-1和KL-6的部分生理生化特征
Table1 Some physiological and biochemical characteristics of strains HZ-1 and KL-6
检测项目Test item | HZ-1 | KL-6 | 检测项目Test item | HZ-1 | KL-6 | |
---|---|---|---|---|---|---|
运动 | + | + | 葡萄糖 Glucose | + | + | |
革兰氏染色 Gram Staining | 阳 Positive | 阳 Positive | 果糖 Fructose | + | + | |
形状 Shape | 杆状 Rod | 杆状 Rod | 木糖 Xylose | + | + | |
形成芽孢 Sporulation | + | + | 甘露糖 Mannose | + | + | |
VP实验 VP test | - | - | 阿拉伯糖 arabinose | - | + | |
2% NaCl生长 Grown in 2% NaCL | + | + | 蛋白酶 Protease activity | + | + | |
7% NaCl生长 Grown in 7% NaCL | + | + | 脂酶 Lipase enzyme activity | - | - | |
10% NaCl生长 Grown in 10% NaCL | +/- | - | 淀粉酶 Amylase activity | + | + | |
柠檬酸盐利用 Utilization of citrate | + | + | 接触酶 Contact enzyme activity | + | + | |
硝酸盐还原 Nitrate reduction | + | + |
图2 菌株HZ-1和KL-6的系统发育树 分支节点上的数值表示分支的置信度百分数;标尺所示长度为 0.01% 核苷酸置换率
Fig. 2 Phylogenetic tree of strains HZ-1 and KL-6 The numerical value on the branch node represents the confidence percentage of the branch. The length shown on the scale represents 0.01% nucleotide replacement rate
图4 菌株部分生物学活性检测 A:菌株淀粉酶活性;B:菌株蛋白酶活性;C:菌株纤维素酶活性;D:菌株溶血酶活性
Fig. 4 Detection of some biological activities of the strain A:Amylase activity of the strain. B:Protease activity of the strain. C:Cellulase activity of the strain. D:Hemolytic enzyme activity of the strain
[1] | 农业农村部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020. |
Fisheries and fisheries administration of the ministry of agriculture and rural affairs of China China fisheries statistics yearbook 2020[M]. Beijing: China Agriculture Press, 2020. | |
[2] | 郑娜. 海参养殖常见病害及防治技术[J]. 齐鲁渔业, 2017(34):25-26. |
Zheng N. Common diseases in sea cucumber breeding and their control techniques[J]. Qilu Fishery, 2017(34):25-26. | |
[3] |
Guo X, Wang Y, Qin Y, et al. Structures, properties and application of alginic acid:A review[J]. International Journal of Biological Macromolecules, 2020, 162:618-628.
doi: 10.1016/j.ijbiomac.2020.06.180 URL |
[4] | 喻虎. 海藻多糖制备与应用研究[J]. 农业与技术, 2018, 38(20):255. |
Yu H. Research on preparation and application of seaweed polysaccharide[J]. J Agr Sci Tech, 2018, 38(20):255. | |
[5] |
Hentati F, Tounsi L, Djomdi D, et al. Bioactive polysaccharides from seaweeds[J]. Molecules, 2020, 25:3152.
doi: 10.3390/molecules25143152 URL |
[6] |
Besednova N, Zaporozhets T, et al. Extracts and marine algae polysaccharides in therapy and prevention of inflammatory diseases of the intestine[J]. Marine Drugs, 2020, 18(6):289.
doi: 10.3390/md18060289 URL |
[7] |
Cheng C, Yang W, et al. Transcriptomically revealed oligo-fucoidan enhances the immune system and protects hepatocytes via the ASGPR/STAT3/HNF4A axis[J]. Biomol, 2020, 10(6):898.
doi: 10.3390/biom10060898 URL |
[8] |
Liu W, Zhou S, Balasubramanian B, et al. Dietary seaweed(Enteromorpha)polysaccharides improve growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis[J]. Fish Shellfish Immunol, 2020, 104:202-212.
doi: 10.1016/j.fsi.2020.05.079 URL |
[9] | Cheng W, Yu J. Effects of the dietary administration of sodium alginate on the immune responses and disease resistance of Taiwan abalone, Haliotis diversicolor supertexta[J]. Fish & Shellfish Immunology, 2013, 34:902-908. |
[10] | Zhu B, Yin H. Alginate lyase:Review of major sources and classification, properties, structure-function analysis and applications[J]. Bioengineered Bugs, 2015, 6(3):125-131. |
[11] | 周敏, 王海英, 冷凯良, 等. 基于宏基因组学的海带降解菌群微生物多样性及其褐藻多糖降解酶系分析[J]. 海洋湖沼通报, 2018, 6:109-117. |
Zhou M, Wang HY, Leng KL, et al. Analysis of microbial diversity of laminaria degrading bacteria and its fucoidan degrading enzyme system based on metagenomics[J]. Marine Limnology Bulletin, 2018, 6:109-117. | |
[12] | 管斌, 倪雪朋, 李悦明, 等. 海藻多糖降解酶的研究进展[J]. 中国酿造, 2010, 29(9):8-12. |
Guan B, Ni XP, et al. Research progress of seaweed polys-accharide degrading enzymes[J]. Chinese Brew, 2010, 29(9):8-12. | |
[13] | 田良. 仿刺参消化道中产酶菌株的筛选鉴定及其在仿刺参饲料中的应用[D]. 厦门:集美大学, 2015. |
Tian L. Screening and identification of enzyme-producing strains in the digestive tract of sea cucumber and its application in sea cucumber feed[D]. Xiamen:Jimei University, 2015. | |
[14] | 李凤辉. 刺参消化道微生物组成及其产酶功能研究[D]. 上海:上海海洋大学, 2014. |
Li FH. The composition and enzyme-producing function of the microflora in the digestive tract of the sea cucumber Apostichopus japonicus[D]. Shanghai:Shanghai Ocean University, 2014. | |
[15] |
Cheng C, Yang W, Hsiao M, et al. Transcriptomically revealed oligo-fucoidan enhances the immune system and protects hepatocytes via the ASGPR/STAT3/HNF4A axis[J]. Biomolecules, 2020, 10(6):898.
doi: 10.3390/biom10060898 URL |
[16] | Wu S, Yang W, Cheng C, et al. Low molecular weight fucoidan prevents radiation-induced fibrosis and secondary tumors in a zebrafish model[J]. Cancers(Basel), 2020, 12(6):1608. |
[17] | Van Doan H, Tapingkae W, Moonmanee T, et al. Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus.[J]. Fish & Shellfish Immunology, 2016, 55:186-194. |
[18] |
Gurpilhares D, Cinelli L, Simas N, et al. Marine prebiotics:Polysaccharides and oligosaccharides obtained by using microbial enzymes[J]. Food Chemistry, 2019, 280:175-186.
doi: S0308-8146(18)32118-6 pmid: 30642484 |
[19] | 林清菁. 一株海藻多糖降解菌的分离与鉴定[J]. 微生物学通报, 2014, 41(11):2208-2215. |
Lin QJ. Isolation and identification of a seaweed polysaccharide degrading bacteria[J]. Microbiology Bulletin, 2014, 41(11):2208-2215. | |
[20] | 朱大玲, 唐啸龙, 张宝玉, 等. 一株海藻多糖降解菌的分离鉴定及产酶条件优化[J]. 海洋科学, 2017, 41(8):101-109. |
Zhu DL, Tang XL, et al. Isolation and identification of a seaweed polysaccharide degrading bacteria and optimization of its enzyme production conditions[J]. Marine Sci, 2017, 41(8):101-109. | |
[21] | 潘爱红, 李江, 等. 南极交替单胞菌R11-5产卡拉胶酶的发酵条件优化[J]. 微生物学通报, 2018, 45(9):2022-2034. |
Pan AH, Li H, Wang L, et al. Optimization of fermentation conditions for carrageenase production by alteromonas antarctica R11-5[J]. Microbiology Bulletin, 2018, 45(9):2022-2034. | |
[22] |
Wang XT, Wang LL, Che J, et al. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1[J]. App Microb Biotech, 2015, 99:5843-5853.
doi: 10.1007/s00253-015-6583-4 URL |
[23] |
Sha YJ, Liu M, Wang BJ, et al. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates[J]. Microbiology, 2016, 85(1):109-115.
doi: 10.1134/S0026261716010112 URL |
[24] | 李昌明. 海参肠道微生物多样性分析及菌株s12~T褐藻胶裂解酶研究[D]. 济南, 山东大学, 2019. |
Li CM. Diversity analysis of sea cucumber intestinal microorganisms and study on S12~T alginate lyase[D]. Ji'nan:Shandong University, 2019. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[3] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[4] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[5] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[6] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[7] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[8] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[9] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[10] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[11] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[12] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[13] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[14] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[15] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 738
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 530
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||