生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 244-258.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1205
收稿日期:
2020-09-23
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
陈明雨,女,研究方向:漆酶催化有机污染物单电子氧化的作用机理;E-mail: 基金资助:
CHEN Ming-yu(), NI Xuan, SI You-bin, SUN Kai()
Received:
2020-09-23
Published:
2021-06-26
Online:
2021-07-08
摘要:
我国有机污染废水排放总量巨大,其释放到生态环境中对野生动物和人群健康构成严重威胁。目前,生物修复技术因其绿色环保、经济高效而备受关注。漆酶能够催化不同类型有机污染物的氧化耦合和分解,该反应具有催化速率高、简单可控、底物广谱和生态友好等特点。鉴于游离态漆酶性能不稳定且难以回收利用,而酶固定化技术可显著改善游离态漆酶的稳定性、增加其循环利用次数和催化功效,有望实现漆酶在环境生物修复中的大规模应用。综述了真菌漆酶的分子结构、底物谱和催化性能,对比了漆酶的4种常规固定化方法(吸附、包埋、共价结合和交联)的优缺点。重点总结了固定化漆酶介导雌激素、抗生素、多环芳烃、个人护理产品、合成染料和磺胺类药物等有毒有害污染物的自由基耦合和氧化分解机理。固定化漆酶以分子氧作为电子受体,催化有机污染物氧化生成活性自由基或醌类中间体。这些活性中间体既能以共价耦合的途径形成聚合物,也可通过自由基相互攻击形成分解产物,进而显著降低母体化合物的生态毒性。固定化漆酶在净化有机废水、消除环境污染和维持生态健康等方面已表现出巨大的应用潜力,未来需要进一步筛选廉价固定化载体和提高固定化漆酶循环利用效率。
陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258.
CHEN Ming-yu, NI Xuan, SI You-bin, SUN Kai. Advances in the Application of Immobilized Fungal Laccase for the Bioremediation of Environmental Organic Contamination[J]. Biotechnology Bulletin, 2021, 37(6): 244-258.
图2 四种常规的真菌漆酶固定化方法 A:吸附法;B:包埋法;C:交联法;D:共价结合法
Fig. 2 Four conventional methods of fungal laccase immobilization A:Adsorption;B:Entrapment;C:Cross linking;D:Covalent binding
漆酶来源 Laccase sources | 有机污染物 Organic contaminants | 反应条件 Reaction conditions | 固定化载体 Immobilization carriers | 去除效率 Removal efficiency/% | 参考文献 References |
---|---|---|---|---|---|
Trametes versicolor | 双酚A(BPA) | 1 mg/mL漆酶、2 mg/L BPA、30℃、pH 5、反应24 h | 海绵支架结构 | 100 | [41] |
Trametes versicolor | BPA | 1 mg/mL漆酶、20 mg/L BPA、30℃、pH 5、反应12 h | Cu(II)-Mn(II)螯合形成的磁性微球 | > 85 | [42] |
Trametes hirsuta | BPA | 50 U/mL漆酶、60 mg/L BPA、45℃、pH 7.0、反应11 h | 磁性纳米粒子 | 87.3 | [43] |
Trametes versicolor | 四环素 | 8 mg/mL漆酶、1 mg/L四环素、35℃、pH 5、反应1 h | 聚甲基丙烯酸甲酯-Fe3O4磁性纳米颗粒构建的纳米纤维 | 100 | [44] |
Trametes versicolor | 萘、菲和蒽 | 1.6 g/L漆酶、43 mg/L萘、27 mg/L菲、19 mg/L蒽、25℃、pH 4.5、反应5 h | 戊二醛和氨基功能化的介孔分子筛SBA-15 | 82、73和55 | [45] |
Trametes versicolor | 三氯生(TCS) | 5%漆酶、10 mg/L TCS、45℃、pH 4.5、反应2 h | 二甲氨基酸乙醇-MIL-53(AI) | 99.2 | [46] |
Trametes versicolor | TCS | 0.6 U/mg漆酶、0.2 mmol/L TCS、pH 5.2、反应6 h | 藻酸铜核壳 | 96 | [25] |
Trametes versicolor | 刚果红染料 | 2 mg/mL漆酶、10 mg/L刚果红染料、35℃、pH 7、反应3.5 h | 多巴胺包覆聚偏氟乙烯膜上构建的Fe2O3@SiO2无机杂化材料 | 97.1 | [47] |
Trametes versicolor | 偶氮染料二甲苯 | 20 U/L漆酶、2.9 mg/L二甲苯、28℃、pH 5、反应4 h | 高密度塑料聚乙烯网 | 51.7 | [48] |
Trametes versicolor | 孔雀石绿染料 | 80 U/L漆酶、100 mg/L孔雀石绿、25℃、pH 4.5、反应2 h | 发酵茶渣 | 95.4 | [49] |
Trametes versicolor | 磺胺噻唑和磺胺甲恶唑 | 1 U/mL漆酶、50 mg/L磺胺药物、1 mmol/L HBT、40℃、pH 5、反应1 h | 硅烷化(3-氨基丙基三乙氧基硅烷)的硅胶珠 | 77和66 | [50] |
Echinodontium taxodii | 磺胺嘧啶、磺胺甲嗪和磺胺甲恶唑 | 0.2 U/mL漆酶、50 mg/L磺胺药物、10 mmol/L ABTS、40℃、pH 5、反应0.5 h | Fe3O4纳米颗粒 | 接近100 | [51] |
表1 固定化真菌漆酶在环境有机污染物去除中的应用
Table 1 Applications of immobilized fungal laccase in the removal of environmental organic contaminants
漆酶来源 Laccase sources | 有机污染物 Organic contaminants | 反应条件 Reaction conditions | 固定化载体 Immobilization carriers | 去除效率 Removal efficiency/% | 参考文献 References |
---|---|---|---|---|---|
Trametes versicolor | 双酚A(BPA) | 1 mg/mL漆酶、2 mg/L BPA、30℃、pH 5、反应24 h | 海绵支架结构 | 100 | [41] |
Trametes versicolor | BPA | 1 mg/mL漆酶、20 mg/L BPA、30℃、pH 5、反应12 h | Cu(II)-Mn(II)螯合形成的磁性微球 | > 85 | [42] |
Trametes hirsuta | BPA | 50 U/mL漆酶、60 mg/L BPA、45℃、pH 7.0、反应11 h | 磁性纳米粒子 | 87.3 | [43] |
Trametes versicolor | 四环素 | 8 mg/mL漆酶、1 mg/L四环素、35℃、pH 5、反应1 h | 聚甲基丙烯酸甲酯-Fe3O4磁性纳米颗粒构建的纳米纤维 | 100 | [44] |
Trametes versicolor | 萘、菲和蒽 | 1.6 g/L漆酶、43 mg/L萘、27 mg/L菲、19 mg/L蒽、25℃、pH 4.5、反应5 h | 戊二醛和氨基功能化的介孔分子筛SBA-15 | 82、73和55 | [45] |
Trametes versicolor | 三氯生(TCS) | 5%漆酶、10 mg/L TCS、45℃、pH 4.5、反应2 h | 二甲氨基酸乙醇-MIL-53(AI) | 99.2 | [46] |
Trametes versicolor | TCS | 0.6 U/mg漆酶、0.2 mmol/L TCS、pH 5.2、反应6 h | 藻酸铜核壳 | 96 | [25] |
Trametes versicolor | 刚果红染料 | 2 mg/mL漆酶、10 mg/L刚果红染料、35℃、pH 7、反应3.5 h | 多巴胺包覆聚偏氟乙烯膜上构建的Fe2O3@SiO2无机杂化材料 | 97.1 | [47] |
Trametes versicolor | 偶氮染料二甲苯 | 20 U/L漆酶、2.9 mg/L二甲苯、28℃、pH 5、反应4 h | 高密度塑料聚乙烯网 | 51.7 | [48] |
Trametes versicolor | 孔雀石绿染料 | 80 U/L漆酶、100 mg/L孔雀石绿、25℃、pH 4.5、反应2 h | 发酵茶渣 | 95.4 | [49] |
Trametes versicolor | 磺胺噻唑和磺胺甲恶唑 | 1 U/mL漆酶、50 mg/L磺胺药物、1 mmol/L HBT、40℃、pH 5、反应1 h | 硅烷化(3-氨基丙基三乙氧基硅烷)的硅胶珠 | 77和66 | [50] |
Echinodontium taxodii | 磺胺嘧啶、磺胺甲嗪和磺胺甲恶唑 | 0.2 U/mL漆酶、50 mg/L磺胺药物、10 mmol/L ABTS、40℃、pH 5、反应0.5 h | Fe3O4纳米颗粒 | 接近100 | [51] |
图3 真菌漆酶催化BPA聚合和分解的双功能机制 A:聚合作用;B:分解作用
Fig. 3 Dual-functional mechanisms of BPA polymerization and decomposition catalyzed by fungal laccase A:Polymerization. B:Decomposition
[1] | 吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报, 2019, 35(9):1-10. |
Wu Y, Ma H, Cao Y, et al. Advances on properties, production, purification and immobilization of fungal laccase[J]. Biotechnology Bulletin, 2019, 35(9):1-10. | |
[2] | 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(4):24-34. |
Gong R, Sun K, Xie DY. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018, 34(4):24-34. | |
[3] | 孙凯, 程行, 余家琳, 等. 漆酶催化生物体内有机物合成与分解代谢的双功能机制及其在生物技术领域中的应用[J]. 农业环境科学学报, 2019, 38(6):1202-1210. |
Sun K, Cheng X, Yu JL, et al. Laccase-catalyzed anabolism and catabolism of organics in in-vivo:Bi-functional mechanisms and applications in biotechnological areas[J]. Journal of Agro-Environment Science, 2019, 38(6):1202-1210. | |
[4] |
Jeon JR, Chang YS. Laccase-mediated oxidation of small organics:bifunctional roles for versatile applications[J]. Trends in Biotechnology, 2013, 31(6):335-341.
doi: 10.1016/j.tibtech.2013.04.002 URL |
[5] |
Ulu A, Birhanli E, Boran F, et al. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes[J]. Int J Biol Macromol, 2020, 150:871-884.
doi: 10.1016/j.ijbiomac.2020.02.006 URL |
[6] |
Apriceno A, Astolfi ML, Girelli AM, et al. A new laccase-mediator system facing the biodegradation challenge:insight into the NSAIDs removal[J]. Chemosphere, 2019, 215:535-542.
doi: S0045-6535(18)31941-6 pmid: 30340161 |
[7] | 邓寒梅, 邵可, 梁家豪, 等. 漆酶的来源及固定化漆酶载体研究进展[J]. 生物技术通报, 2017, 33(6):10-15. |
Deng HM, Shao K, Liang JH, et al. Source of laccase and research progress on carriers for laccase immobilization[J]. Biotechnology Bulletin, 2017, 33(6):10-15. | |
[8] |
Cui J, Jia S. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology:current development and future challenges[J]. Crit Rev Biotechnol, 2015, 35(1):15-28.
doi: 10.3109/07388551.2013.795516 URL |
[9] |
Fernández-Fernández M, Sanromán MÁ, Moldes D. Recent developments and applications of immobilized laccase[J]. Biotechnology Advances, 2013, 31(8):1808-1825.
doi: 10.1016/j.biotechadv.2012.02.013 URL |
[10] | 陈成龙, 孙澍雨, 周维增, 等. 漆酶催化合成生物活性化合物的研究进展[J]. 化学通报, 2018, 81(10):896-902. |
Chen CL, Sun SY, Zhou WZ, et al. Research progress in catalytic synjournal of bioactive compounds by laccase[J]. Chemistry, 2018, 81(10):896-902. | |
[11] | 张泽雄, 刘红艳, 邢贺, 等. 漆酶可降解底物种类的研究进展[J]. 生物技术通报, 2017, 33(10):97-102. |
Zhang Z, Liu H, Xing H, et al. Research progress on substrate species degraded by laccase[J]. Biotechnology Bulletin, 2017, 33(10):97-102. | |
[12] |
Hakulinen N, Kiiskinen LL, Kruus K, et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site[J]. Nat Struct Biol, 2002, 9(8):601-605.
pmid: 12118243 |
[13] |
Chen M, Waigi MG, Li S, et al. Fungal laccase-mediated humification of estrogens in aquatic ecosystems[J]. Water Research, 2019, 166:115040.
doi: 10.1016/j.watres.2019.115040 URL |
[14] | 靳蓉, 张飞龙. 漆酶的结构与催化反应机理[J]. 中国生漆, 2012, 31(4):6-16. |
Jin R, Zhang F. Structure and catalytic mechanism of laccase[J]. Journal of Chinese Lacquer, 2012, 31(4):6-16. | |
[15] | Chen X, He B, Feng M, et al. Immobilized Laccase on magnetic nanoparticles for enhanced lignin model compounds degradation[J]. Chinese Journal of Chemical Engineering, 2020. https://doi.org/10.1016/j.cjche.2020.02.028. |
[16] |
Yuan H, Chen L, Cao Z, et al. Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase:Optimization of conditions and comparison of decolourization efficiency[J]. Biochemical Engineering Journal, 2020, 156:107501.
doi: 10.1016/j.bej.2020.107501 URL |
[17] | 孙凯, 陈正杰, 汪登洋, 等. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12):45-55. |
Sun K, Chen Z, Wang D, et al. Removal of bisphenol A in wastewater by immobilized laccase[J]. Biotechnology Bulletin, 2020, 36(12):45-55. | |
[18] |
Daronch NA, Kelbert M, Pereira CS, et al. Elucidating the choice for a precise matrix for laccase immobilization:a review[J]. Chemical Engineering Journal, 2020, 397:125506.
doi: 10.1016/j.cej.2020.125506 URL |
[19] |
Girelli AM, Quattrocchi L, Scuto FR. Silica-chitosan hybrid support for laccase immobilization[J]. J Biotechnol, 2020, 318:45-50.
doi: S0168-1656(20)30124-3 pmid: 32447128 |
[20] |
Liu D, Chen D. Recent advances in nano-carrier immobilized enzymes and their applications[J]. Process Biochemistry, 2020, 92:464-475.
doi: 10.1016/j.procbio.2020.02.005 URL |
[21] |
Muthuvelu KS, Ravikumar R, Selvaraj RN, et al. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation[J]. International Journal of Biological Macromolecules, 2020, 152:1098-1107.
doi: 10.1016/j.ijbiomac.2019.10.198 URL |
[22] | 柯彩霞, 范艳利, 苏枫, 等. 酶的固定化技术最新研究进展[J]. 生物工程学报, 2018, 34(2):188-203. |
Ke C, Fan Y, Su F, et al. Recent advances in enzyme immobilization[J]. Chinese Journal of Biotechnology, 2018, 34(2):188-203. | |
[23] | Martinová L, Novák J. Polymer nanofibrous material for enzyme immobilization[J]. Mater Sci Forum, 2018, 4727:129-135. |
[24] |
Dwamena AK, Woo SH, Chang Sk. Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation[J]. Biotechnology Letters, 2020, 42(5):845-852.
doi: 10.1007/s10529-020-02829-w URL |
[25] |
Le TT, Murugesan K, Lee CS, et al. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads[J]. Bioresource Technology, 2016, 216:203-210.
doi: 10.1016/j.biortech.2016.05.077 URL |
[26] |
Liang S, Wu X, Xiong J, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization:an update review[J]. Coord Chem Rev, 2020, 406:213149.
doi: 10.1016/j.ccr.2019.213149 URL |
[27] |
Kołodziejczak-Radzimska A, Budna A, Ciesielczyk F, et al. Laccase from Trametes versicolor supported onto mesoporous Al2O3:stability tests and evaluations of catalytic activity[J]. Process Biochemistry, 2020, 95:71-80.
doi: 10.1016/j.procbio.2020.05.008 URL |
[28] | Mohamad NR, Marzuki NHC, Buang NA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnology & Biotechnological Equipment, 2015, 29(2):205-220. |
[29] |
Ratanapongleka K, Punbut S. Removal of acetaminophen in water by laccase immobilized in barium alginate[J]. Environmental Technology, 2018, 39(3):336-345.
doi: 10.1080/09593330.2017.1301563 URL |
[30] | Zhou W, Zhang W, Cai Y. Laccase immobilization for water purification:A comprehensive review[J]. Chemical Engineering Journal, 2020. 126272. https://doi.org/10.1016/j.cej.2020.126272 |
[31] | 曹文娟, 袁海生. 桦褶孔菌漆酶固定化及其对染料的降解[J]. 菌物学报, 2016(3):343-354. |
Cao WJ, Yuan HS. Immobilization and dye degradation of laccase from Lenzites betulina[J]. Mycosystema, 2016(3):343-354. | |
[32] |
Rouhani S, Azizi S, Kibechu RW, et al. Laccase Immobilized Fe3O4-graphene oxide nanobiocatalyst improves stability and immobilization efficiency in the green preparation of sulfa drugs[J]. Catalysts, 2020, 10(4):459.
doi: 10.3390/catal10040459 URL |
[33] | 曹秀. 一步法合成包埋生物酶的凝胶及其在偶氮染料废水脱色中的应用[D]. 上海:东华大学, 2014. |
Cao X. Encapsulation of enzymes in gels by one-step polymerization for decoloration of azo dyes application[D]. Shanghai:Donghua University, 2014. | |
[34] |
Xu P, Du H, Peng X, et al. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system[J]. Science of the Total Environment, 2020, 708:134970.
doi: 10.1016/j.scitotenv.2019.134970 URL |
[35] |
Luo J, Marpani F, Brites R, et al. Directing filtration to optimize enzyme immobilization in reactive membranes[J]. Journal of Membrane Science, 2014, 459:1-11.
doi: 10.1016/j.memsci.2014.01.065 URL |
[36] |
Wang S, Ma X, Liu Y, et al. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants[J]. Bioresource Technology, 2020, 302:122825.
doi: 10.1016/j.biortech.2020.122825 URL |
[37] |
Zdarta J, Meyer AS, Jesionowski T, et al. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants:a critical review[J]. Biotechnol Adv, 2019, 37(7):107401.
doi: S0734-9750(19)30090-4 pmid: 31128206 |
[38] |
Lloret L, Eibes G, Moreira MT, et al. On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs(NSAIDs)[J]. Journal of Molecular Catalysis. B, Enzymatic, 2013, 97:233-242.
doi: 10.1016/j.molcatb.2013.08.021 URL |
[39] |
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez B D, et al. Emergent contaminants:endocrine disruptors and their laccase-assisted degradation-a review[J]. Science of the Total Environment, 2018, 612:1516-1531.
doi: 10.1016/j.scitotenv.2017.09.013 URL |
[40] |
Bilal M, Rasheed T, Nabeel F, et al. Hazardous contaminants in the environment and their laccase-assisted degradation-a review[J]. Journal of Environmental Management, 2019, 234:253-264.
doi: 10.1016/j.jenvman.2019.01.001 URL |
[41] |
Zdarta J, Antecka K, Frankowski R, et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds[J]. Sci Total Environ, 2018, 615:784-795.
doi: 10.1016/j.scitotenv.2017.09.213 URL |
[42] |
Lin J, Liu Y, Chen S, et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal[J]. Int J Biol Macromol, 2016, 84:189-199.
doi: 10.1016/j.ijbiomac.2015.12.013 URL |
[43] |
Sadeghzadeh S, Nejad ZG, Ghasemi S, et al. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute[J]. Bioresource Technology, 2020, 306:123169.
doi: 10.1016/j.biortech.2020.123169 URL |
[44] |
Zdarta J, Jankowska K, Bachosza K, et al. A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline:effect of process conditions and catalytic pathways[J]. Catalysis Today, 2020, 348:127-136.
doi: 10.1016/j.cattod.2019.08.042 URL |
[45] |
Bautista LF, Morales G, Sanz R. Biodegradation of polycyclic aromatic hydrocarbons(PAHs)by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15[J]. Chemosphere, 2015, 136:273-280.
doi: 10.1016/j.chemosphere.2015.05.071 URL |
[46] |
Jia Y, Chen Y, Luo J, et al. Immobilization of laccase onto meso-MIL-53(Al)via physical adsorption for the catalytic conversion of triclosan[J]. Ecotoxicol Environ Saf, 2019, 184:109670.
doi: 10.1016/j.ecoenv.2019.109670 URL |
[47] |
Zhu Y, Qiu F, Rong J, et al. Covalent laccase immobilization on the surface of poly(vinylidene fluoride)polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment[J]. Colloids Surf B, 2020, 191:111025.
doi: 10.1016/j.colsurfb.2020.111025 URL |
[48] | Diorio LA, Salvatierra Fréchou DM, Levin LN. Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system[J]. Revista Argentina de Microbiologia, 2020. https://doi.org/10.1016/j.ram.2020.04.007. |
[49] |
Xu L, Sun K, Wang F, et al. Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization[J]. Journal of Environmental Management, 2020, 270:110904.
doi: 10.1016/j.jenvman.2020.110904 URL |
[50] | Rahmani K, Faramarzi M A, Mahvi A H, et al. Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads[J]. International Biodeterioration & Biodegradation, 2015, 97:107-114. |
[51] |
Shi L, Ma F, Han Y, et al. Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators[J]. J Hazard Mater, 2014, 279:203-211.
doi: 10.1016/j.jhazmat.2014.06.070 URL |
[52] |
Maryšková M, Ardao I, García-González C A, et al. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals[J]. Enzyme Microb Technol, 2016, 89:31-38.
doi: 10.1016/j.enzmictec.2016.03.001 URL |
[53] |
Chen Y, Yu C, Lee T, et al. Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways[J]. Cell Chemical Biology, 2017, 24(6):712-724.
doi: 10.1016/j.chembiol.2017.05.012 URL |
[54] |
Morales M, De La Fuente M, Martín-Folgar R. BPA and its analogues(BPS and BPF)modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius(Diptera)[J]. Environmental Pollution, 2020, 265:114806.
doi: 10.1016/j.envpol.2020.114806 URL |
[55] | Vandenberg LN, Chahoud I, Heindel JJ, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A[J]. Environ Health Perspect, 2010, 8:1055-1070. |
[56] |
Yu W, Yang S, Du B, et al. Feasibility and mechanism of enhanced 17β-estradiol degradation by the nano Zero Valent Iron-citrate system[J]. Journal of Hazardous Materials, 2020, 396:122657.
doi: 10.1016/j.jhazmat.2020.122657 URL |
[57] |
Ye X, Wang H, Kan J, et al. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone[J]. Chemico-Biological Interactions, 2017, 276:105-112.
doi: 10.1016/j.cbi.2017.06.010 URL |
[58] | Ashkan M, Tomoya N, Hikaru M, et al. Novel biodegradation system for bisphenol A using laccase-immobilized hollow fiber membranes[J]. Interl J Biol Macromol, 2019, 130:737-744. |
[59] |
Tatiane B, Marita GP, Gisele AB, et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A[J]. Sci Total Environ, 2018, 634:1346-1351.
doi: 10.1016/j.scitotenv.2018.04.051 URL |
[60] |
Zhang C, You S, Zhang J, et al. An effective in-situ method for laccase immobilization:Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products[J]. Bioresource Technology, 2020, 308:123271.
doi: 10.1016/j.biortech.2020.123271 URL |
[61] |
Yin F, Dong H, Zhang W, et al. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline[J]. Bioresour Technol, 2018, 250:247-255.
doi: 10.1016/j.biortech.2017.11.015 URL |
[62] | Liu H, Ma C, Chen G, et al. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4):3204-3213. |
[63] | 杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10):2993-3002. |
Yang FX, Mao DQ, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2993-3002. | |
[64] |
Wen X, Jia Y, Li J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium-a white rot fungus[J]. Chemosphere, 2009, 75(8):1003-1107.
doi: 10.1016/j.chemosphere.2009.01.052 URL |
[65] |
Shao B, Liu Z, Zeng G, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres:noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal[J]. J Hazard Mater, 2019, 362:318-326.
doi: 10.1016/j.jhazmat.2018.08.069 URL |
[66] |
Sun K, Huang Q, Li S, et al. Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole[J]. Journal of Hazardous Materials, 2017, 331:182-188.
doi: 10.1016/j.jhazmat.2017.02.058 URL |
[67] | 汤星阳, 夏颖, 杨彬彬, 等. 利用漆酶-天然介体系统高效降解土霉素[J]. 高校化学工程学报, 2020, 34(3):737-741. |
Tang XY, Xia Y, Yang BB, et al. Efficient degradation of oxytetracycline using a laccase-natural mediator system[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(3):737-741. | |
[68] |
Polachova A, Gramblicka T, Parizeka O, et al. Estimation of human exposure to polycyclic aromatic hydrocarbons(PAHs)based on the dietary and outdoor atmospheric monitoring in the Czech Republic[J]. Environmental Research, 2020, 182:108977.
doi: 10.1016/j.envres.2019.108977 URL |
[69] |
Niu J, Dai Y, Guo H, et al. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor[J]. Journal of Hazardous Materials, 2013, 248-249:254-260.
doi: 10.1016/j.jhazmat.2013.01.017 URL |
[70] |
Li X, Lin X, Yin R, et al. Optimization of laccase-mediated benzo[a]pyrene oxidation and the bioremedial application in aged polycyclic aromatic hydrocarbons-contaminated soil[J]. Journal of Health Science, 2010, 56(5):534-540.
doi: 10.1248/jhs.56.534 URL |
[71] | Pozdnyakova N, Dubrovskaya E, Chernyshova M, et al. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus[J]. Fungal Biology, 2018, 122(5):263-237. |
[72] | 林先贵, 吴宇澄, 曾军, 等. 多环芳烃的真菌漆酶转化及污染土壤修复技术[J]. 微生物学通报, 2017, 44(7):1720-1727. |
Lin X, Wu Y, Zeng J, et al. Transformation of polycyclic aromatic hydrocarbon by fungal laccases and potential application in soil remediation[J]. Microbiology China, 2017, 44(7):1720-1727. | |
[73] |
Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, et al. Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators[J]. Enzyme and Microbial Technology, 2006, 39(6):1242-1249.
doi: 10.1016/j.enzmictec.2006.03.009 URL |
[74] |
Chang Y, Lee J, Liu K, et al. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material:application to PAH degradation[J]. Environmental Science and Pollution Research, 2016, 23(5):4024-4035.
doi: 10.1007/s11356-015-4248-6 URL |
[75] |
Elhusseiny SM, Amin HM, Shebl RI. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus[J]. International Microbiology, 2019, 22(2):217-225.
doi: 10.1007/s10123-018-00041-5 pmid: 30810987 |
[76] |
Duan P, Huang X, Ha M, et al. miR-142-5p/DAX1-dependent regulation of P450c17 contributes to triclosan-mediated testosterone suppression[J]. Sci Total Environ, 2020, 717:137280.
doi: 10.1016/j.scitotenv.2020.137280 URL |
[77] |
Magro C, Mateus EP, Paz-Garcia JM, et al. Emerging organic contaminants in wastewater:understanding electrochemical reactors for triclosan and its by-products degradation[J]. Chemosphere, 2020, 247:125758.
doi: 10.1016/j.chemosphere.2019.125758 URL |
[78] |
Nie E, Chen Y, Gao X, et al. Uptake, translocation and accumulation of 14C-triclosan in soil-peanut plant system[J]. Science of the Total Environment, 2020, 724:138165.
doi: 10.1016/j.scitotenv.2020.138165 URL |
[79] |
Yun H, Liang B, Kong D, et al. Fate, risk and removal of triclocarban:a critical review[J]. Journal of Hazardous Materials, 2020, 387:121944.
doi: 10.1016/j.jhazmat.2019.121944 URL |
[80] |
Zhang H, Lu Y, Liang Y, et al. Triclocarban-induced responses of endogenous and xenobiotic metabolism in human hepatic cells:toxicity assessment based on nontargeted metabolomics approach[J]. J Hazard Mater, 2020, 392:122475.
doi: 10.1016/j.jhazmat.2020.122475 URL |
[81] |
Dou R, Wang J, Chen Y, et al. The transformation of triclosan by laccase:effect of humic acid on the reaction kinetics, products and pathway[J]. Environmental Pollution, 2018, 234:88-95.
doi: 10.1016/j.envpol.2017.10.119 URL |
[82] |
Sun K, Li S, Yu J, et al. Cu2+-assisted laccase from Trametes versi-color enhanced self-polyreaction of triclosan[J]. Chemosphere, 2019, 225:745-754.
doi: 10.1016/j.chemosphere.2019.03.079 URL |
[83] | 孙凯, 李舜尧. 漆酶催化氧化水溶液中三氯生转化的作用机理[J]. 中国环境科学, 2017, 37(8):2947-2954. |
Sun K, Li SY. Laccase-mediated transformation mechanism of triclosan in aqueous solution[J]. China Environmental Science, 2017, 37(8):2947-2954. | |
[84] |
Zhang W, Yang Q, Luo Q, et al. Laccase-carbon nanotube nanocomposites for enhancing dyes removal[J]. Journal of Cleaner Production, 2020, 242:118425.
doi: 10.1016/j.jclepro.2019.118425 URL |
[85] |
Dong H, Guo T, Zhang W, et al. Biochemical characterization of a novel azoreductase from Streptomyces sp. :application in eco-friendly decolorization of azo dye wastewater[J]. International Journal of Biological Macromolecules, 2019, 140:1037-1046.
doi: 10.1016/j.ijbiomac.2019.08.196 URL |
[86] |
Ai J, Hu L, Zhou Z, et al. Surfactant-free synjournal of a novel octahedral ZnFe2O4/graphene composite with high adsorption and good photocatalytic activity for efficient treatment of dye wastewater[J]. Ceram Int, 2020, 46(8):11786-11798.
doi: 10.1016/j.ceramint.2020.01.213 URL |
[87] |
Abbasi M. Synjournal and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal[J]. Journal of Cleaner Production, 2017, 145:105-113.
doi: 10.1016/j.jclepro.2017.01.046 URL |
[88] | Singh RL, Singh PK, Singh RP. Enzymatic decolorization and degradation of azo dyes-A review[J]. International Biodeterioration & Biodegradation, 2015, 104:21-31. |
[89] |
Legerská B, Chmelová D, Ondrejovič M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor[J]. J Biotechnol, 2018, 285:84-90.
doi: S0168-1656(18)30610-2 pmid: 30171927 |
[90] | Othman AM, González-Domínguez E, Sanromán Á, et al. Immobilization of laccase on functionalized multiwalled carbon nanotube membranes and application for dye decolorization[J]. RSC Advances, 2016, 115:114690-114697. |
[91] | 粟有志, 周均, 袁小雯, 等. DMSPE-HPLC-MS/MS法测定水中19种磺胺类药物[J]. 中国给水排水, 2019, 20:104-109. |
Su YZ, Zhou J, Yuan XW, et al. Determination of 19 sulfonamides residue in water with combination of dispersive micro solid phase extraction and high performance liquid chromatography-tandem mass spectrometry[J]. China Water and Wastewater, 2019, 20:104-109. | |
[92] | 孙亚奇, 郭京超, 潘源虎, 等. 磺胺类药物代谢与残留消除以及检测方法研究进展[J]. 中国兽药杂志, 2019, 2:66-75. |
Sun Y, Guo J, Pan Y, et al. Research progress on the metabolism, residue elimination and detection methods of sulfonamides[J]. Chinese Journal of Veterinary Drug, 2019, 2:66-75. | |
[93] | 丁惠君, 吴亦潇, 钟家有, 等. 两种介体物质在漆酶降解磺胺类抗生素中的作用[J]. 中国环境科学, 2016, 36(5):1469-1475. |
Ding H, Wu Y, Zhong J, et al. Role of two mediators in sulfonamide antibiotics degradation by laccase oxidation system[J]. China Environmental Science, 2016, 36(5):1469-1475. | |
[94] | 李馨. 基于漆酶介导Pycnoporus sanguineus-Alcaligenes faecalis混菌生物降解磺胺类抗生素研究[D]. 天津:天津大学. 2017. |
Li X. Study on laccase of Pycnoporus sanguineus regulating bioremoval of sulfonamides under mixed culture with Alcaligenes faecalis[D]. Tianjin:Tianjin University, 2017. |
[1] | 陈泉冰, 曹伟洁, 李春, 吕波. GH79家族糖苷水解酶分子进化关系和蛋白结构研究[J]. 生物技术通报, 2023, 39(1): 104-114. |
[2] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
[3] | 郝大程, 周建强, 韩君. 土壤重金属和有机污染物的微生物修复:生物强化和生物刺激[J]. 生物技术通报, 2017, 33(10): 9-17. |
[4] | 李昱龙, 韩正敏. 嗜麦芽窄食单胞菌在环保和农业生产上的应用[J]. 生物技术通报, 2015, 31(8): 35-43. |
[5] | 李绍娟,王一枭,赵欢,周一兵. 水生生物谷胱甘肽相关酶对持久性有毒物质响应机理的研究[J]. 生物技术通报, 2013, 0(7): 24-28. |
[6] | 徐丹, 李帅, 张敏, 孙野青. 硫丹的生物学效应研究进展[J]. 生物技术通报, 2013, 0(5): 45-51. |
[7] | 何广正;徐书景;马宁;刘东;鞠建松;. 丙氨酸脱氢酶研究概况[J]. , 2011, 0(12): 27-32. |
[8] | 李思经. 减少污泥的废水处理系统[J]. , 1997, 0(02): 39-39. |
[9] | . 环境保护及农业废物利用[J]. , 1994, 0(02): 115-122. |
[10] | 彭乙冬;. 含有木质素酶的重组菌能对付污染[J]. , 1988, 0(01): 18-18. |
[11] | 马亚敏;. 生物技术在控制氯化有机污染物方面的突破[J]. , 1986, 0(04): 15-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||