[1]Sarwar N, Imran M, Shaheen MR, et al. Phytoremediation strategies for soils contaminated with heavy metals:Modifications and future perspectives[J]. Chemosphere, 2017, 171:710-721. [2]钱春香, 王明明, 许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报:自然科学版, 2013, 43:669-674. [3]Mishra GK. Microbes in heavy metal remediation:A review on current trends and patents[J]. Recent Pat Biotechnol, 2017, DOI:10. 2174/1872208311666170120121025. [4]侯梅芳, 潘栋宇, 黄赛花, 等. 微生物修复土壤多环芳烃污染的研究进展[J]. 生态环境学报, 2014, 23:1233-1238. [5]Hao DC, Song SM, Mu J, et al. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization[J]. Sci Rep, 2016, 6:22006. [6]Cycoń M, Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil:A review[J]. Chemosphere, 2017, 172:52-71. [7]Chowdhury A, Pradhan S, Saha M, et al. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies[J]. Ind J Microbiol, 2008, 48:114-127. [8]Karpouzas DG, Walker A. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil[J]. Soil Biol Biochem, 2000, 32:1753-1762. [9]Singh BK, Walker A, Wright DJ. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates:influence of different environmental conditions[J]. Soil Biol Biochem, 2006, 38:2682-2693. [10]Silva VP, Moreira-Santos M, Mateus C, et al. Evaluation of Arthrobacter aurescens strain TC1 as bioaugmentation bacterium in soils contaminated with the herbicidal substance terbuthylazine[J]. PLoS One, 2015, 10:e0144978. [11]Wang Q, Xie S, Hu R. Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil[J]. Int Biodeterior Biodegr, 2013, 77:63-67. [12]Das R, Das SJ, Das AC. Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil[J]. Eur J Soil Biol, 2016, 74:9-15. [13]Cornu JY, Huguenot D, Jézéquel K, et al. Bioremediation of copper-contaminated soils by bacteria[J]. World J Microbiol Biotechnol, 2017, 33(2):26. [14]Kuppusamy S, Thavamani P, Venkateswarlu K, et al. Remediation approaches for polycyclic aromatic hydrocarbons(PAHs)contaminated soils:Technological constraints, emerging trends and future directions[J]. Chemosphere, 2017, 168:944-968. [15]Alvarez A, Saez JM, Davila Costa JS, et al. Actinobacteria:Current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166:41-62. [16]Gao C, Jin X, Ren J, et al. Bioaugmentation of DDT-contaminatedsoil by dissemination of the catabolic plasmid pDOD[J]. J Environ Sci, 2015, 27:42-50. [17]Zhang Q, Wang B, Cao Z, et al. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil[J]. J. Hazard Mater, 2012, 221-222:178-184. [18]Nguyen VK, Tran HT, Park Y, et al. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor[J]. J Ind Microbiol Biotechnol, 2017, 44(6):857-868. [19] Pan X, Chen Z, Li L, et al. Microbial strategy for potential lead remediation:a review study[J]. World J Microbiol Biotechnol, 2017, 33(2):35. [20] Sun L, Cao X, Li M, et al. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides[J]. Environ Sci Pollut Res Int, 2017, 24(10):9681-9689. [21]Abad-Valle P, Iglesias-Jiménez E, álvarez-Ayuso E. A comparative study on the influence of different organic amendments on traceelement mobility and microbial functionality of a polluted mine soil[J]. J Environ Manage, 2017, 188:287-296. [22]Ali A, Guo D, Mahar A, et al. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated withStreptomycespactum(Act12)in contaminated soils[J]. Ecotoxicol Environ Saf, 2017, 139:202-209. [23]李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35:6881-6890. [24]Biache C, Ouali S, Cébron A, et al. Bioremediation of PAH-contamined soils:Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance[J]. J Hazard Mater, 2017, 329:1-10. [25]Hao DC, Ge GB, Yang L. Bacterial diversity of Taxus rhizosphere:culture-independent and culture-dependent approaches[J]. FEMS Microbiol Lett, 2008, 284(2):204-212. [26]郝大程, 陈士林, 肖培根. 基于分子生物学和基因组学的植物根际微生物研究[J]. 微生物学通报, 2009, 36(6):892-899. [27]Ren CG, Kong CC, Bian B, et al. Enhanced phytoremediation of soils contaminated with PAHs by arbuscularmycorrhiza and rhizobium[J]. Int J Phytoremediation, 2017, 19(9):789-797. [28]Liang SH, Hsu DW, Lin CY, et al. Enhancement of microbial 2, 4, 6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment[J]. Ecotoxicol Environ Saf, 2017, 138:39-46. [29]Martínez-Pascual E, Grotenhuis T, Solanas AM, et al. Coupling chemical oxidation and biostimulation:Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil[J]. J Hazard Mater, 2015, 300:135-143. [30]Mandal A, Biswas B, Sarkar B, et al. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination[J]. Sci Total Environ, 2016, 550:611-618. [31]Biswas B, Sarkar B, Mandal A, et al. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil[J]. J Hazard Mater, 2015, 298:129-137. [32]Chen F, Tan M, Ma J, et al. Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination:A greenhouse study[J]. J Hazard Mater, 2016, 302:250-261. [33]Thavamani P, Megharaj M, Naidu R. Metal-tolerant PAH-degrading bacteria:development of suitable test medium and effect of cadmium and its availability on PAH biodegradation[J]. Environ Sci Pollut Res Int, 2015, 22(12):8957-8968. [34]Cheng Y, Wang L, Faustorilla V, et al. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil[J]. Chemosphere, 2017, 175:294-299. [35]Wu M, Ye X, Chen K, et al. Bacterial community shift and hydrocarbon transformation during bioremediation ofshort-term petroleum-contaminated soil[J]. Environ Pollut, 2017, 223:657-664. [36]杨茜, 吴蔓莉, 聂麦茜, 等. 石油污染土壤的生物修复技术及微生物生态效应[J]. 环境科学, 2015, 36:1856-1863. [37]McIntosh P, Schulthess CP, Kuzovkina YA, et al. Bio- and phytoremediation of total petroleum hydrocarbons(TPH)under various conditions[J]. Int J Phytoremediation, 2017, 19(8):755-764. [38]Qi Z, Wei Z. Microbial flora analysis for the degradation of beta-cypermethrin[J]. Environ Sci Pollut Res Int, 2017, 24(7):6554-6562. [39]Salam JA, Hatha MA, Das N. Microbial-enhanced lindane removal by sugarcane(Saccharum officinarum)in doped soil-applications in phytoremediation and bioaugmentation[J]. J Environ Manage, 2017, 193:394-399. [40]Li C, Lv T, Liu W, et al. Efficient degradation of chlorimuron-ethyl by a bacterial consortium and shifts in the aboriginal microorganism community during the bioremediation of contaminated-soil[J]. Ecotoxicol Environ Saf, 2017, 139:423-430. [41]Barba S, Villase?or J, Rodrigo MA, et al. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil[J]. Chemosphere, 2017, 177:120-127. [42] Teng Y, Wang X, Zhu Y, et al. Biodegradation of pentachloronitro-benzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils[J]. Environ Sci Pollut Res Int, 2017, 24(10):9538-9547. [43]PerruchonC, Chatzinotas A, Omirou M, et al. Isolation of a bacterial consortium able to degrade the fungicide thiabendazole:the key role of a Sphingomonas phylotype[J]. Appl Microbiol Biotechnol, 2017, 101(9):3881-3893. [44]高宪雯. 微生物—植物在石油—重金属复合污染土壤修复中的作用研究[D]. 济南:山东师范大学, 2013. [45]Chen M, Xu P, Zeng G, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:Applications, microbes and future research needs[J]. Biotechnol Adv, 2015, 33(6 Pt 1):745-755. [46]周建强, 刘晓玲, 韩君, 等. 基于植物仿生的土壤重金属污染原位自持修复技术[J]. 环境化学, 2016, 35(7):1398-1406. [47]周建强, 韩君, 徐愿坚, 等. 基于植物仿生的污染土壤原位自持修复中重金属形态变化分析[J]. 环境工程技术学报, 2017, 7:71-77. [48]周建强. 基于植物仿生的土壤重金属污染原位自持修复技术研究[D]. 重庆:中国科学院重庆绿色智能技术研究院, 2016. [49]郝大程, 周建强, 王闯, 韩君. 重金属污染土壤的植物仿生和植物修复比较研究[J]. 生物技术通报, 2017, 33(2):66-71. [50] Ayaz E, Gothalwal R. Effect of environmental factors on bacterial quorum sensing[J]. Cell Mol Biol(Noisy-le-grand). 2014, 60(5):46-50. [51]Wei L, Wang S, Zuo Q, et al. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil[J]. Environ Sci Process Impacts. 2016, 18(6):760-767. [52]Dueholm MS, Marques IG, Karst SM, et al. Survival and activity of individual bioaugmentation strains[J]. Bioresour Technol, 2015, 186:192-199. [53]Abbasian F, Palanisami T, Megharaj M, et al. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis[J]. Biotechnol Prog, 2016, 32(3):638-648. [54]Garoutte A, Cardenas E, Tiedje J, et al. Methodologies for probing the metatranscriptome of grassland soil[J]. J Microbiol Methods, 2016, 131:122-129. |