生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 164-174.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0408
舒洁1,2(), 张仁军1,2, 梁应冲1,2, 陈雅琼3(), 张娟4, 郭建5, 陈穗云2,6()
收稿日期:
2021-04-01
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
舒洁,女,硕士研究生,研究方向:植物病虫害;E-mail: 基金资助:
SHU Jie1,2(), ZHANG Ren-jun1,2, LIANG Ying-chong1,2, CHEN Ya-qiong3(), ZHANG Juan4, GUO Jian5, CHEN Sui-yun2,6()
Received:
2021-04-01
Published:
2021-07-26
Online:
2021-08-13
摘要:
番茄根结线虫病严重影响农业生产,利用植物源和微生物源两种不同的生物制剂复配防治番茄根结线虫病,试图探索出适应绿色农业生产需求的一种新的可能性。通过稀释涂布平板法从土壤分离出3株12 h内对根结线虫二龄幼虫(second-stage juveniles,J2)抑杀率分别达89.23%、87.95%、88.97%的生防菌株SJ5、SJ17、SJ19,经16S rDNA扩增测序鉴定分别为耐冷假单胞菌(Pseudomonas psychrotolerans)、黏金黄杆菌(Chryseobacterium gleum)和枯草芽孢杆菌(Bacillus subtilis)。通过平板抑菌圈法证明3种生防菌之间、生防菌与苦参印楝素之间无拮抗现象,适宜复配。盆栽实验初步验证,发酵48 h的3种生防菌发酵液(有效活菌数≥3.0 亿个/mL)与苦参印楝素稀释液(1 000 倍)复配制剂处理组对根结线虫病的防效达67.75%,与化学农药(氟吡菌酰胺、噻唑膦)处理组相比防效无显著性差异,且番茄株高、茎围、苗和根部的生物量均显著性增加,盆栽试验结论初步发现复配方案具有防治番茄根结线虫病害应用潜力。
舒洁, 张仁军, 梁应冲, 陈雅琼, 张娟, 郭建, 陈穗云. 植物源与微生物源生物制剂复配防治根结线虫病[J]. 生物技术通报, 2021, 37(7): 164-174.
SHU Jie, ZHANG Ren-jun, LIANG Ying-chong, CHEN Ya-qiong, ZHANG Juan, GUO Jian, CHEN Sui-yun. Control of Root-knot Nematode Disease by Compounding Biological Agents from Plant and Microorganisms[J]. Biotechnology Bulletin, 2021, 37(7): 164-174.
图5 显微镜下观察线虫毒力测定 ①LB对照;②SJ5发酵液;③SJ17发酵液;④SJ19发酵液;⑤苦参印楝素(1 000倍)。线虫虫体弯曲表示处于活体状态,弧形或直线形状代表已死亡或者僵直濒临死亡状态
Fig. 5 Virulence determination of nematodes under microscope ① LB control;② SJ5 fermentation filtrate;③ SJ17 fermentation filtrate;④ SJ19 fermentation filtrate;⑤ Sophora azadirachtin dilution(1 000 times). The bent body of the nematode indicates that it is in a living state,and the arc or straight shape indicates that it is dead or stiff and dying
图6 不同处理组毒力测试差异分析 *代表显著性差异水平0.01<P<0.05,**代表 P <0.01,n.s.代表无显著性差异
Fig. 6 Differences in virulence test of different treatment groups * indicates a significant difference level 0.01<P<0.05,** indicates P <0.01,and n.s. indicates no significant difference
图7 相容性测定 A:SJ5进行涂板,分别将SJ17和SJ19点涂在平板上;B:SJ17进行涂板,分别将SJ5和SJ19点涂在平板上
Fig. 7 Compatible test results A:SJ5 is used for coating,and SJ17 and SJ19 are dot-coated on the plate.B:SJ17 is used for coating the plate,and SJ5 and SJ19 are dot-coated on the plate respectively
图8 不同处理对番茄根系的影响(45 d) 红色箭头指向处代表番茄根部产生根结,即根结线虫寄生形成的瘤状突起
Fig. 8 Effects of different treatments on tomato root system(45 d) The points where the red arrows in the picture point to represents root knots on tomato roots,that is,nodules formed by root-knot nematode parasites
图9 不同处理对番茄根结线虫病的防治效果(45 d) 不同小写字母表示差异显著(P < 0.05)
Fig. 9 Control effects of different treatments on tomato root-knot nematode disease(45 d) Different letters refer to significant differences(P < 0.05)
[1] | 李君明, 项朝阳, 王孝宣, 等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜, 2021(2):13-20. |
Li JM, Xiang CY, Wang XX, et al. Current situation of tomato industry in China during ‘ the thirteenth five-year plan’ period and future prospect[J]. China Veg, 2021(2):13-20. | |
[2] | 王明琦. 番茄抗病种质资源的分子鉴定及其抗病性分析[D]. 上海:上海交通大学, 2019. |
Wang MQ. Molecular identification and diseases resistance analysis of resistant germplam resources in tomato[D]. Shanghai:Shanghai Jiaotong University, 2019. | |
[3] | 万宇力. 防治番茄根结线虫病药肥的筛选[D]. 南宁:广西大学, 2014. |
Wan YL. Screening of pesticide-fertilizer control to root-knot nematode of tomato[D]. Nanning:Guangxi University, 2014. | |
[4] | 王勋芳, 何德琴, 杨忠庆, 等. 番茄根结线虫病的发生特点与防治技术[J]. 云南农业科技, 2020(3):38-39. |
Wang XF, He DQ, Yang ZQ, et al. Occurrence Characteristics and Control Techniques of Tomato Root-knot Nematode Disease.[J]. Yunnan Agric Sci Technol, 2020(3):38-39. | |
[5] | 孙宜川, 黄卜. 根结线虫病发生特点及综合防治技术[J]. 西北园艺:综合, 2020(6):46-47. |
Sun YC, Huang B. Occurrence Characteristics of Root-knot Nematode Disease and Integrated Control Techniques[J]. Northwest Horticulture(Comprehensive), 2020(6):46-47. | |
[6] | 赵宝刚. 根结线虫病的重发原因及防治对策[J]. 河南农业, 2020(31):36-37. |
Zhao BG. Recurring Causes of Root-knot Nematode Disease and Control Strategies[J]. Henan Nongye, 2020(31):36-37. | |
[7] | 梁兵, 黄坤, 李宏光, 等. 肥料和农药协同作用防治烟草根结线虫病研究[J]. 西南农业学报, 2016, 29(8):1894-1898. |
Liang B, Huang K, Li HG, et al. Controlling tobacco root-knot Nematodes by fertilizer and pesticide synergy[J]. Southwest China J Agric Sci, 2016, 29(8):1894-1898. | |
[8] |
Naz I, Khan RAA, Masood T, et al. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber[J]. Biol Control, 2021, 152:104429.
doi: 10.1016/j.biocontrol.2020.104429 URL |
[9] | 胡玉金, 冯敏, 郭文秀, 等. 作物根结线虫病害综合防治技术概述[J]. 山东农业科学, 2019, 51(4):149-156. |
Hu YJ, Feng M, Guo WX, et al. Overview of integrated control techniques of root-knot nematode disease[J]. Shandong Agric Sci, 2019, 51(4):149-156. | |
[10] | 王佳, 曾广智, 汪哲, 等. 杀线虫植物以及植物源杀线虫活性化合物研究与应用进展[J]. 中国生物防治学报, 2018, 34(3):469-479. |
Wang J, Zeng GZ, Wang Z, et al. Research and application on namaticidal plants and phytochemicals[J]. Chin J Biol Control, 2018, 34(3):469-479. | |
[11] | Matsuda K, Kimura M, Komai K, et al. Nematicidal activities of(-)-N-methylcytisine and(-)-anagyrine from Sophora flavescens against pine wood Nematodes[J]. Agric Biol Chem, 1989, 53(8):2287-2288. |
[12] |
Matsuda K, Yamada K, Kimura M, et al. Nematicidal activity of matrine and its derivatives against pine wood Nematodes[J]. J Agric Food Chem, 1991, 39(1):189-191.
doi: 10.1021/jf00001a038 URL |
[13] | 刘晓宇, 陈立杰, 邢志富, 等. 4种生物源杀线剂对番茄根结线虫的田间防效[J]. 植物保护, 2020, 46(6):228-232, 253. |
Liu XY, Chen LJ, Xing ZF, et al. Field efficacy of four bio-nematicides against tomato root-knot Nematodes[J]. Plant Prot, 2020, 46(6):228-232, 253. | |
[14] | 赵霞, 夏丽娟, 席亚东, 等. 3种药剂对生姜根结线虫的田间防效研究[J]. 农药科学与管理, 2020, 41(12):51-54, 46. |
Zhao X, Xia LJ, Xi YD, et al. Study on field control efficacy of three nematocides against Meloidogyne spp[J]. Pestic Sci Adm, 2020, 41(12):51-54, 46. | |
[15] | 徐瑛, 张冬冬, 王江岭, 等. 两种生物制剂对植物寄生线虫防效的室内测定[J]. 安徽农业科学, 2009, 37(8):3611-3612. |
Xu Y, Zhang DD, Wang JL, et al. Indoor bioassay of control effects of two biological nematocides on plant-parasitic nematode[J]. J Anhui Agric Sci, 2009, 37(8):3611-3612. | |
[16] | 刘计权, 韩晓静, 谢树莲. 植物源农药防治根结线虫研究进展[J]. 农药, 2011, 50(6):395-398, 410. |
Liu JQ, Han XJ, Xie SL. Research progresses on the prevention and control of Meloidogyne spp. by botanical nematocides[J]. Agrochemicals, 2011, 50(6):395-398, 410. | |
[17] |
Lu HB, Xu SY, Zhang WJ, et al. Nematicidal activity of trans-2-hexenal against southern root-knot nematode(Meloidogyne incognita)on tomato plants[J]. J Agric Food Chem, 2017, 65(3):544-550.
doi: 10.1021/acs.jafc.6b04091 URL |
[18] |
Ntalli N, Caboni P. A review of isothiocyanates biofumigation activity on plant parasitic Nematodes[J]. Phytochem Rev, 2017, 16(5):827-834.
doi: 10.1007/s11101-017-9491-7 URL |
[19] |
Wood C. Cooper J M. Kenyon D M. Allyl isothiocyanate shows promise as a naturally produced suppressant of the potato cyst nematode. Globodera pallida. in biofumigation systems[J]. Nematology, 2017, 19(4):389-402
doi: 10.1163/15685411-00003054 URL |
[20] |
Dong LQ, Yang JK, Zhang KQ. Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus[J]. J Appl Microbiol, 2007, 103(6):2476-2488.
pmid: 18045433 |
[21] | 张瑞平, 曾庆宾, 余伟, 等. 烟草根结线虫病不同防控措施的田间筛选[J]. 中国烟草科学, 2016, 37(4):54-59. |
Zhang RP, Zeng QB, Yu W, et al. Different measures of controlling tobacco root-knot nematode disease in the field[J]. Chin Tob Sci, 2016, 37(4):54-59. | |
[22] | 聂海珍, 孙漫红, 李世东, 等. 棉隆与淡紫拟青霉联合防治番茄根结线虫病的效果评价[J]. 植物保护学报, 2016, 43(4):689-696. |
Nie HZ, Sun MH, Li SD, et al. Integrated control of root-knot nematode disease of tomato by dazomet and Paecilomyces lilacinus[J]. J Plant Prot, 2016, 43(4):689-696. | |
[23] | 刘会清, 吴迪, 张爱香, 等. 在生物有机肥中加入淡紫拟青霉对温室黄瓜生长的影响[J]. 河北北方学院学报:自然科学版, 2012, 28(2):39-43. |
Liu HQ, Wu D, Zhang AX, et al. Influence of adding Paecilomyces lilacinus to biological organic fertilizer on growth of cucumber in warmhouse[J]. J Hebei North Univ:Nat Sci Ed, 2012, 28(2):39-43. | |
[24] | 上官亦卿, 贾凤安, 常帆, 等. 淡紫拟青霉(Purpureocillium lilacinum)及其对病虫害生防效果和机制研究进展[J]. 陕西农业科学, 2018, 64(9):81-88. |
Shangguan YQ, Jia FA, Chang F, et al. Advance of Purpureocillium lilacinum and its effects on control of pest and disease and its mechanism[J]. Shaanxi J Agric Sci, 2018, 64(9):81-88. | |
[25] | 田宝玉, 黄薇, 江贤章, 等. 植物寄生线虫生防细菌及其作用机制研究[J]. 生物技术, 2009, 19(4):90-93. |
Tian BY, Huang W, Jiang XZ, et al. Bacteria used in the biocontrol of plant-parasitic Nematodes and its pathogenesis[J]. Biotechnology, 2009, 19(4):90-93. | |
[26] | 王鑫鹏. 根结线虫生防细菌的作用效果及机制初探[D]. 长春:中国科学院东北地理与农业生态研究所, 2018. |
Wang XP. The effect and mechanism of biological bacteria agaist root knot Nematodes[D]. Changchun:Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2018. | |
[27] | 任静. 微生物菌剂防治蔬菜根结线虫病的研究进展[J]. 农业技术与装备, 2020(9):147-148. |
Ren J. Research progress on microbial agent to control vegetable Meloidogyne spp[J]. Agric Technol Equip, 2020(9):147-148. | |
[28] | 陈志杰, 张淑莲, 李英梅, 等. DB61/T-542, 日光温室蔬菜根结线虫绿色防控技术规程[S]. 陕西:陕西省动物研究所, 2012:4-11. |
Chen ZJ, Zhang SL, Li YM, et al. DB61/T-542, Technical regulations for green control of root-knot nematodes on vegetables in sunlight greenhouse[S]. Shaanxi:Shaanxi Institute of Zoology, 2012:4-11. | |
[29] | 安亚杰. 市场上流行的几种杀线剂[J]. 营销界:农资与市场, 2017(7):37-38. |
An YJ. Several disinfectants popular in the market[J]. Marketing:Agricultural Materials and Markets, 2017(7):37-38. | |
[30] | 农业农村部. 化肥农药使用量零增长行动目标顺利实现我国三大粮食作物化肥农药利用率双双达40%以上[J]. 中国食品, 2021(3):152-153. |
The Ministry of Agriculture and Rural, The Ministry of Agriculture and Rural, Affairs Has Successfully Achieved the Goal of Zero Growth in the Use of Chemical Fertilizers and Pesticides, The Utilization Rate of Chemical Fertilizers and Pesticides Three Major Food Crops Has Reached More Than 40%[J]. China Food, 2021(3):152-153. | |
[31] | 邓文财. 化肥农药减量使用中存在问题与途径措施[J]. 农业科技通讯, 2020(1):41-43. |
Deng WC. Problems and measures in the reduction of fertilizers and pesticides[J]. Bull Agric Sci Technol, 2020(1):41-43. | |
[32] | 周燚, 杨廷宪, 杨佩, 等. 利用棉花不同生育期的拮抗内生菌协同控制棉黄萎病研究[J]. 安徽农业科学, 2012, 40(13):7722-7725, 7762. |
Zhou Y, Yang TX, Yang P, et al. Antagonistic endophytic bacteria isolated from different growth stages of cotton for the control of cotton Verticillium wilt[J]. J Anhui Agric Sci, 2012, 40(13):7722-7725, 7762. | |
[33] | 张仁军, 魏刚, 杨兆忠, 等. 几种生物菌剂防治烟草青枯病药效试验[J]. 现代农业科技, 2019(6):79-81. |
Zhang RJ, Wei G, Yang ZZ, et al. Efficacy test on several bio-fungicides against tobacco bacterial wilt[J]. Mod Agric Sci Technol, 2019(6):79-81. | |
[34] | 张家家. 生防菌组合应用对黄瓜根结线虫病的防治效果及生防菌的相容性[D]. 北京:中国农业科学院, 2014. |
Zhang JJ. The combinative application and compatibility of different biocontrol agents in suppressing cucumber root-knot nematode caused by Meloidogyne incognita[D]. Beijing:Chinese Academy of Agricultural Sciences, 2014. | |
[35] |
Mendoza AR, Sikora RA. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus[J]. BioControl, 2009, 54(2):263-272.
doi: 10.1007/s10526-008-9181-x URL |
[36] |
Siddiqui IA, Shaukat SS. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato[J]. Lett Appl Microbiol, 2004, 38(2):169-175.
pmid: 14746551 |
[37] | 高玉红, 闫生辉, 赵卫星. 印楝素与不同杀虫剂混配对根结线虫的防治效果[J]. 江苏农业科学, 2014, 42(7):133-135. |
Gao YH, Yan SH, Zhao WX. The Effect of Mixed Pair of Azadirachtin and Different Insecticides on Root-knot Nematode Control[J]. Jiangsu Agric Sci, 2014, 42(7):133-135. | |
[38] | 孙立广, 张洪春, 赵秀云, 等. 烟草青枯病拮抗菌在有机肥中的定殖效率及田间防治效果[J]. 中国烟草科学, 2016, 37(4):48-53. |
Sun LG, Zhang HC, Zhao XY, et al. Colonization rate of several antagonistic bacteria against tobacco bacterial wilt in organic fertilizers and control efficacy in field[J]. Chin Tob Sci, 2016, 37(4):48-53. | |
[39] | 郑渊洁, 郝建宇, 侯红萍. 黑曲霉产纤维素酶混合发酵条件的研究[J]. 中国酿造, 2016, 35(12):118-122. |
Zheng YJ, Hao JY, Hou HP. Multi-strains fermentation condition of Aspergillus niger for cellulase production[J]. China Brew, 2016, 35(12):118-122. | |
[40] | 蓝星杰, 甘良, 刘继红, 等. SC11生防菌剂及其不同复配对西瓜和茄子防病促生作用[J]. 西北农业学报, 2015, 24(12):117-124. |
Lan XJ, Gan L, Liu JH, et al. Effects of SC11 combined with other biocontrol agents on disease control and growth promotion in watermelon and eggplant[J]. Acta Agric Boreali Occidentalis Sin, 2015, 24(12):117-124. | |
[41] | 李苗苗. 三株芽孢杆菌复配对烟草黑胫病的防治效果及菌株生防特性研究[D]. 北京:中国农业科学院, 2020. |
Li MM. Control effect of three Bacillus on tobacco black shank and its biocontrol characteristics[D]. Beijing:Chinese Academy of Agricultural Sciences, 2020. | |
[42] | 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5):789-800. |
Jin N, Liu Q, Jian H. Advances on biological control of plant-parasitic Nematodes[J]. Chin J Biol Control, 2015, 31(5):789-800. | |
[43] |
Liu R, Zhang Y, Chen P, et al. Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08-11306 reveal a turnerbactin biosynjournal gene cluster that contributes to nitrogen fixation[J]. J Biotechnol, 2017, 253:10-13.
doi: 10.1016/j.jbiotec.2017.05.012 URL |
[44] |
Bhise KK, Bhagwat PK, Dandge PB. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L[J]. 3 Biotech, 2017, 7(2):1-13.
doi: 10.1007/s13205-016-0582-8 URL |
[45] | 梁建根, 郝中娜, 王连平, 等. 嗜铁素功能研究概述[J]. 中国农学通报, 2011, 27(5):284-287. |
Liang JG, Hao ZN, Wang LP, et al. Research progress on the function of siderophore[J]. Chin Agric Sci Bull, 2011, 27(5):284-287. | |
[46] |
Ramyabharathi S, Sankari Meena K, Rajendran L, et al. Biocontrol of wilt-nematode complex infecting Gerbera by Bacillus subtilis under protected cultivation[J]. Egypt J Biol Pest Control, 2018, 28(1):1-9.
doi: 10.1186/s41938-017-0002-3 URL |
[47] |
Mazzuchelli RDCL, Mazzuchelli EHL, de Araujo FF. Efficiency of Bacillus subtilis for root-knot and lesion Nematodes management in sugarcane[J]. Biol Control, 2020, 143:104185.
doi: 10.1016/j.biocontrol.2020.104185 URL |
[48] |
Abd-El-khair H, El-Nagdi WMA, Youssef MMA, et al. Protective effect of Bacillus subtilis, B. Pumilus, and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea[J]. Bull Natl Res Centre, 2019, 43(1):1-7.
doi: 10.1186/s42269-018-0041-2 URL |
[1] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[4] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[5] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[6] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[7] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[8] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[9] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[10] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[11] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[12] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[13] | 陈浩婷, 张玉静, 刘洁, 代泽敏, 刘伟, 石玉, 张毅, 李天来. 低磷胁迫下番茄转录因子WRKY6功能分析[J]. 生物技术通报, 2023, 39(10): 136-147. |
[14] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[15] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||