生物技术通报 ›› 2021, Vol. 37 ›› Issue (11): 178-189.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0634
• 食用菌生物技术专题(专题主编: 黄晨阳) • 上一篇 下一篇
陈剑秋(), 黄胜, 赵伟超, 占观平, 孙淑静(), 陈利丁()
收稿日期:
2021-05-17
出版日期:
2021-11-26
发布日期:
2021-12-03
作者简介:
陈剑秋,男,硕士研究生,研究方向:食用菌精深加工;E-mail: 基金资助:
CHEN Jian-qiu(), HUANG Sheng, ZHAO Wei-chao, ZHAN Guan-ping, SUN Shu-jing(), CHEN Li-ding()
Received:
2021-05-17
Published:
2021-11-26
Online:
2021-12-03
摘要:
银耳胶是一种经简易浸提工艺所制得的新型食品添加剂,主要成分为银耳多糖。本研究制备了两种不同的黄原胶-银耳胶(XG-TFG)和瓜儿豆胶-银耳胶(GG-TFG)的复配胶溶液并分析了两种单胶体(XG、GG)及其复配胶溶液在不同理化条件下的表观黏度和流变学特性,并比较了添加不同比例复配胶酸奶的感官评价。结果表明所有胶体溶液的表观黏度随胶浓度的增加呈现非线性增长;离子种类和浓度对XG-TFG复配胶表观黏度的影响显著小于XG单体胶;此外,复配胶表观黏度在弱酸和弱碱环境中保持稳定,但会在较低加热温度下随加热时间增加而下降。加入TFG能减缓由低浓度糖溶液和超声处理引起的胶体表观黏度下降。冻融后的复配胶表观黏度均未下降,呈现较好的稳定性。流变学测试结果表明了复配后的胶体均为假塑性流体,具有较好的剪切恢复能力。GG与TFG配比为1:1时,酸奶中添加复配胶的总体评价最高,口感最佳,说明合适的胶体配比能够改善酸奶的质构和风味。以上研究结果将为TFG与其他胶体的复配及其应用提供理论依据。
陈剑秋, 黄胜, 赵伟超, 占观平, 孙淑静, 陈利丁. 银耳胶复配体系的流变学特性研究[J]. 生物技术通报, 2021, 37(11): 178-189.
CHEN Jian-qiu, HUANG Sheng, ZHAO Wei-chao, ZHAN Guan-ping, SUN Shu-jing, CHEN Li-ding. Study on the Rheological Properties of the Mixtures with Tremella fuciformis Gum[J]. Biotechnology Bulletin, 2021, 37(11): 178-189.
Gums | Concentrations/(g·L-1) | ||||||
---|---|---|---|---|---|---|---|
XG | 0.40 | 0.80 | 1.20 | 1.60 | 2.00 | 3.00 | |
3XG∶1TFG | 0.80 | 1.20 | 1.60 | 2.00 | 2.40 | ||
1XG∶1TFG | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | |
1XG∶3TFG | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 | ||
GG | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 5.00 | |
3GG∶1TFG | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | ||
1GG∶1TFG | 4.00 | 4.50 | 5.00 | 5.50 | 6.00 | 7.00 | 8.00 |
1GG∶3TFG | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 |
表1 测定胶体表观黏度所用浓度
Table 1 Concentrations used to determine the apparent viscosity of gums
Gums | Concentrations/(g·L-1) | ||||||
---|---|---|---|---|---|---|---|
XG | 0.40 | 0.80 | 1.20 | 1.60 | 2.00 | 3.00 | |
3XG∶1TFG | 0.80 | 1.20 | 1.60 | 2.00 | 2.40 | ||
1XG∶1TFG | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | |
1XG∶3TFG | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 | ||
GG | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 | 5.00 | |
3GG∶1TFG | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | ||
1GG∶1TFG | 4.00 | 4.50 | 5.00 | 5.50 | 6.00 | 7.00 | 8.00 |
1GG∶3TFG | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 |
感官属性Sensory properties | 评分标准Evaluation standards | 分数Score | ||
---|---|---|---|---|
组织状态Texture | 酸奶均匀度差,黏稠度稀,有气泡,有大量乳清(< 1.5) | 酸奶均匀,有少量乳清出,黏稠度适宜(1.5-2.4) | 酸奶均匀细腻无杂质,无气泡,稠度好(2.5-3.0) | 3 |
口感 Mouthfeel | 过酸或无酸味,口感粗糙(< 2.5) | 酸味稍重,口感较好 (2.5-3.5) | 酸甜适口,口感细腻(3.5-4.0) | 4 |
风味 Flavor | 奶香味稍淡,添加剂风味较浓或平淡(< 1.2) | 酸奶香气平淡,添加剂风味较浓或平淡(1.2-1.5) | 有乳酸菌发酵而成的清香,风味适宜(1.6-2.0) | 2 |
色泽 Color | 色泽不均匀,呈黄色或出现褐变 (< 0.5) | 色泽均匀,稍带微黄色 (0.5-0.7) | 色泽均匀一致,呈乳白 (0.8-1) | 1 |
表2 酸奶感官属性及其描述
Table 2 Sensory properties of yogurt and its description
感官属性Sensory properties | 评分标准Evaluation standards | 分数Score | ||
---|---|---|---|---|
组织状态Texture | 酸奶均匀度差,黏稠度稀,有气泡,有大量乳清(< 1.5) | 酸奶均匀,有少量乳清出,黏稠度适宜(1.5-2.4) | 酸奶均匀细腻无杂质,无气泡,稠度好(2.5-3.0) | 3 |
口感 Mouthfeel | 过酸或无酸味,口感粗糙(< 2.5) | 酸味稍重,口感较好 (2.5-3.5) | 酸甜适口,口感细腻(3.5-4.0) | 4 |
风味 Flavor | 奶香味稍淡,添加剂风味较浓或平淡(< 1.2) | 酸奶香气平淡,添加剂风味较浓或平淡(1.2-1.5) | 有乳酸菌发酵而成的清香,风味适宜(1.6-2.0) | 2 |
色泽 Color | 色泽不均匀,呈黄色或出现褐变 (< 0.5) | 色泽均匀,稍带微黄色 (0.5-0.7) | 色泽均匀一致,呈乳白 (0.8-1) | 1 |
图1 不同XG、GG及其与TFG复配胶浓度的表观黏度 A:XG及其与TFG复配胶;B:GG及其与TFG复配胶
Fig. 1 Apparent viscosity of XG,GG and their mixtures with TFG at different concentrations A:XG and its mixture with TFG. B:GG and its mixture with TFG
Salt ions/(g·L-1) | XG(0.8 g·L-1) | 1XG∶1TFG(2.0 g·L-1) | GG(3.5 g·L-1) | 1GG∶1TFG(5.5 g·L-1) |
---|---|---|---|---|
Control | 45.27±0.25 a | 47.77±3.29 a | 59.00±3.04 a | 64.93±4.01 a |
NaCl(1.0) | 20.67±1.53 b | 27.33±1.53 b# | 51.57±1.25 b | 51.33±0.76 b |
NaCl(15.0) | 9.50±0.50 b* | 12.77±0.75 b*# | 53.27±1.55 b | 40.17±2.02 b*# |
KCl(1.0) | 28.17±0.76 b | 39.50±1.50 b# | 51.33±1.50 b | 42.17±1.76 b# |
KCl(15.0) | 16.43±1.40 b* | 17.20±1.71 b* | 61.50±1.32 a* | 48.17±3.25 b*# |
CaCl2(1.0) | 17.83±1.76 b | 29.00±1.50 b# | 69.00±4.58 b | 41.17±1.26 b# |
CaCl2(15.0) | 10.90±0.79 b* | 17.77±0.25 b*# | 49.83±1.89 b* | 40.83±1.53 b# |
表3 Na+、K+、Ca2+对胶体表观黏度的影响
Table 3 Effect of Na+,K+,and Ca2+ on the apparent viscosity of gums
Salt ions/(g·L-1) | XG(0.8 g·L-1) | 1XG∶1TFG(2.0 g·L-1) | GG(3.5 g·L-1) | 1GG∶1TFG(5.5 g·L-1) |
---|---|---|---|---|
Control | 45.27±0.25 a | 47.77±3.29 a | 59.00±3.04 a | 64.93±4.01 a |
NaCl(1.0) | 20.67±1.53 b | 27.33±1.53 b# | 51.57±1.25 b | 51.33±0.76 b |
NaCl(15.0) | 9.50±0.50 b* | 12.77±0.75 b*# | 53.27±1.55 b | 40.17±2.02 b*# |
KCl(1.0) | 28.17±0.76 b | 39.50±1.50 b# | 51.33±1.50 b | 42.17±1.76 b# |
KCl(15.0) | 16.43±1.40 b* | 17.20±1.71 b* | 61.50±1.32 a* | 48.17±3.25 b*# |
CaCl2(1.0) | 17.83±1.76 b | 29.00±1.50 b# | 69.00±4.58 b | 41.17±1.26 b# |
CaCl2(15.0) | 10.90±0.79 b* | 17.77±0.25 b*# | 49.83±1.89 b* | 40.83±1.53 b# |
图2 不同pH对胶体表观黏度的影响 不同字母表示不同pH作用后的胶体表观黏度存在显著性差异(P < 0.05)
Fig. 2 Effect of different pH on the apparent viscosity of gums Different letters indicate that the apparent viscosity of the colloids after different pH treatment has significant difference(P < 0.05)
图3 不同加热处理对胶体表观黏度的影响 A:XG及其与TFG复配胶;B:GG及其与TFG复配胶。不同字母表示同一温度加热不同时间后的胶体表观黏度存在显著性差异(P < 0.05)
Fig. 3 Effects of different heat treatments on the apparent viscosity of gums A:XG and its mixture with TFG. B:GG and its mixture with TFG. Different letters indicate that there is significant difference in the colloids apparent viscosity after heating different time and at the same temperature(P < 0.05)
图4 不同超声处理对胶体表观黏度的影响 A:XG及其与TFG复配胶;B:GG及其与TFG复配胶。不同字母表示同一功率处理不同时间后的胶体表观黏度存在显著性差异(P < 0.05)
Fig. 4 Effects of different μLtrasonic treatments on the apparent viscosity of gums A:XG and its mixture with TFG. B:GG and its mixture with TFG. Different letters indicate that there is significant difference in the colloids apparent viscosity after the same power treatment for different time(P < 0.05)
Sugar solution | XG(0.8 g/L) | 1XG∶1TFG(2.0 g/L) | GG(3.5 g/L) | 1GG∶1TFG(5.5 g/L) |
---|---|---|---|---|
Control | 45.27±0.25 a | 47.77±3.29 a | 59.00±3.04 a | 64.93±4.01 a |
Glucose(4%) | 45.33±0.76 a | 55.50±0.70 b# | 48.93±0.60 b | 67.37±1.21 a# |
Glucose(12%) | 48.00±0.20 b* | 56.63±0.32 b# | 54.77±0.25 b* | 72.83±0.76 b*# |
Sucrose(4%) | 37.00±0.20 b | 47.23±0.25 a# | 39.90±0.26 b | 60.03±1.21 a# |
Sucrose(12%) | 48.13±0.32 b* | 57.77±0.25 b*# | 39.87±0.15 b | 78.27±1.10 b*# |
表4 葡萄糖、蔗糖溶液对胶体表观黏度的影响
Table 4 Effect of glucose and sucrose solution on the apparent viscosity of gums
Sugar solution | XG(0.8 g/L) | 1XG∶1TFG(2.0 g/L) | GG(3.5 g/L) | 1GG∶1TFG(5.5 g/L) |
---|---|---|---|---|
Control | 45.27±0.25 a | 47.77±3.29 a | 59.00±3.04 a | 64.93±4.01 a |
Glucose(4%) | 45.33±0.76 a | 55.50±0.70 b# | 48.93±0.60 b | 67.37±1.21 a# |
Glucose(12%) | 48.00±0.20 b* | 56.63±0.32 b# | 54.77±0.25 b* | 72.83±0.76 b*# |
Sucrose(4%) | 37.00±0.20 b | 47.23±0.25 a# | 39.90±0.26 b | 60.03±1.21 a# |
Sucrose(12%) | 48.13±0.32 b* | 57.77±0.25 b*# | 39.87±0.15 b | 78.27±1.10 b*# |
图5 不同冻融处理对胶体表观黏度的影响 不同母表示在不同冻融处理次数后的胶体表观黏度存在显著性差异(P < 0.05)
Fig. 5 Effects of different freeze-thaw treatments on the apparent viscosity of gums Different letters indicate that there is significant difference in the colloids apparent viscosity after different freeze-thaw treatments(P < 0.05)
图6 XG、GG及其与TFG复配胶的流变曲线和剪切稀化 A、C:XG及其与TFG复配胶;B、D:GG及其与TFG复配胶
Fig.6 Rheological curves and shear thinning of XG,GG and their mixtures with TFG A,C:XG and its mixture with TFG. B,D:GG and its mixture with TFG
Gums/(g·L-1) | τ0/Pa | K/Pa.sn | n | R2 |
---|---|---|---|---|
XG(1.0) | 0.1692±0.0146 | 0.18386±0.01149 | 0.4761±0.01099 | 0.9979 |
3XG∶1TFG(1.4) | 0.02304±0.01451 | 0.17095±0.01073 | 0.5004±0.01109 | 0.9981 |
1XG∶1TFG(5.0) | -0.00934±0.00384 | 0.03892±0.00103 | 0.81198±0.00473 | 0.9999 |
1XG∶3TFG(4.0) | 0.02494±0.0104 | 0.1104±0.00598 | 0.59089±0.00965 | 0.9989 |
GG(3.0) | -0.01935±0.00543 | 0.05394±0.00181 | 0.7549±0.00597 | 0.9997 |
3GG∶1TFG(5.0) | -0.111±0.02868 | 0.31886±0.0168 | 0.58478±0.00938 | 0.9989 |
1GG∶1TFG(8.0) | -0.07627±0.02193 | 0.23183±0.01003 | 0.66309±0.00772 | 0.9994 |
1GG∶3TFG(8.0) | -0.02071±0.00667 | 0.05895±0.00179 | 0.81308±0.0054 | 0.9998 |
表5 XG、GG及其与TFG复配胶流变曲线的Herschel -Bulkley模型拟合参数
Table 5 Fitting parameters of Herschel-Bulkley model for rheological curves of XG,GG and their mixtures with TFG
Gums/(g·L-1) | τ0/Pa | K/Pa.sn | n | R2 |
---|---|---|---|---|
XG(1.0) | 0.1692±0.0146 | 0.18386±0.01149 | 0.4761±0.01099 | 0.9979 |
3XG∶1TFG(1.4) | 0.02304±0.01451 | 0.17095±0.01073 | 0.5004±0.01109 | 0.9981 |
1XG∶1TFG(5.0) | -0.00934±0.00384 | 0.03892±0.00103 | 0.81198±0.00473 | 0.9999 |
1XG∶3TFG(4.0) | 0.02494±0.0104 | 0.1104±0.00598 | 0.59089±0.00965 | 0.9989 |
GG(3.0) | -0.01935±0.00543 | 0.05394±0.00181 | 0.7549±0.00597 | 0.9997 |
3GG∶1TFG(5.0) | -0.111±0.02868 | 0.31886±0.0168 | 0.58478±0.00938 | 0.9989 |
1GG∶1TFG(8.0) | -0.07627±0.02193 | 0.23183±0.01003 | 0.66309±0.00772 | 0.9994 |
1GG∶3TFG(8.0) | -0.02071±0.00667 | 0.05895±0.00179 | 0.81308±0.0054 | 0.9998 |
图7 XG、GG以其与TFG复配胶的剪切结构恢复力测试结果 A:XG及其与TFG复配胶;B:GG及其与TFG复配胶
Fig.7 Test results of shear structural recovery of XG,GG and their mixtures with TFG A:XG and its mixture with TFG. B:GG and its mixture with TFG
图8 XG、GG及其与TFG复配胶的黏弹性测试结果 A:XG及其复配胶;B:GG及其复配胶
Fig.8 Viscoelasticity test results of XG,GG and their mixtures with TFG A:XG and its mixture with TFG. B:GG and its mixture with TFG
胶体复配比 Compound ratio of colloid | 组织状态 Texture | 口感 Mouthfeel | 风味 Flavor | 色泽 Color | 总分 Total score |
---|---|---|---|---|---|
3XG∶1TFG | 2.29 ± 0.46 ab | 3.21 ± 0.52 ab | 1.56 ± 0.24 a | 0.80 ± 0.09 a | 7.71 ± 0.95 ab |
1XG∶1TFG | 1.34 ± 0.16 c | 2.30 ± 0.21c | 1.28 ± 0.13 b | 0.36 ± 0.07 b | 6.26 ± 0.64 b |
1XG∶3TFG | 2.39 ± 0.50 a | 3.34 ± 0.46 ab | 1.50 ± 0.22 a | 0.78 ± 0.10 a | 7.55 ± 1.22 ab |
3GG∶1TFG | 2.18 ± 0.40 ab | 2.99 ± 0.41 b | 1.43 ± 0.24 ab | 0.79 ± 0.10 a | 7.38 ± 0.76 ab |
1GG∶1TFG | 2.23 ± 0.38 ab | 3.49 ± 0.10 a | 1.28 ± 0.13 b | 0.70 ± 0.12 a | 7.94 ± 0.68 a |
1GG∶3TFG | 1.95 ± 0.50 b | 2.78 ± 0.40 b | 1.39 ± 0.25 ab | 0.78 ± 0.12 a | 6.91 ± 0.90 b |
表6 酸奶中加入TFG复配胶后的感官评价得分
Table 6 Sensory evaluation scores of yogurt added mixtures with TFG
胶体复配比 Compound ratio of colloid | 组织状态 Texture | 口感 Mouthfeel | 风味 Flavor | 色泽 Color | 总分 Total score |
---|---|---|---|---|---|
3XG∶1TFG | 2.29 ± 0.46 ab | 3.21 ± 0.52 ab | 1.56 ± 0.24 a | 0.80 ± 0.09 a | 7.71 ± 0.95 ab |
1XG∶1TFG | 1.34 ± 0.16 c | 2.30 ± 0.21c | 1.28 ± 0.13 b | 0.36 ± 0.07 b | 6.26 ± 0.64 b |
1XG∶3TFG | 2.39 ± 0.50 a | 3.34 ± 0.46 ab | 1.50 ± 0.22 a | 0.78 ± 0.10 a | 7.55 ± 1.22 ab |
3GG∶1TFG | 2.18 ± 0.40 ab | 2.99 ± 0.41 b | 1.43 ± 0.24 ab | 0.79 ± 0.10 a | 7.38 ± 0.76 ab |
1GG∶1TFG | 2.23 ± 0.38 ab | 3.49 ± 0.10 a | 1.28 ± 0.13 b | 0.70 ± 0.12 a | 7.94 ± 0.68 a |
1GG∶3TFG | 1.95 ± 0.50 b | 2.78 ± 0.40 b | 1.39 ± 0.25 ab | 0.78 ± 0.12 a | 6.91 ± 0.90 b |
[1] | 彭卫红, 王勇, 黄忠乾, 等. 我国银耳研究现状与存在问题[J]. 食用菌学报, 2005, 12(1): 51-56. |
Peng WH, Wang Y, Huang ZQ, et al. The present situation of Tremella fuciformis research and problems existed in China[J]. Acta Edulis Fungi, 2005, 12(1): 51-56. | |
[2] |
Zhang Z, Wang X, Zhao M, et al. Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis[J]. Carbohydr Polym, 2014, 112: 578-582.
doi: 10.1016/j.carbpol.2014.06.030 URL |
[3] |
Wen L, Gao Q, Ma CW, et al. Effect of polysaccharides from Treme-lla fuciformis on UV- induced photoaging[J]. Journal of Functional Foods, 2016, 20: 400-410.
doi: 10.1016/j.jff.2015.11.014 URL |
[4] | Kim SW, Hwang HJ, Baek YM, et al. Proteomic analysis in ob/ob mice before and after hypoglycemic polysaccharide treatments[J]. J Microbiol Biotechnol, 2009, 19(10): 1109-1121. |
[5] |
Bin C. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydr Polym, 2010, 81(2): 420-424.
doi: 10.1016/j.carbpol.2010.02.039 URL |
[6] | 杨嘉丹, 刘婷婷, 等. 微波辅助提取银耳多糖工艺优化及其流变、凝胶特性[J]. 食品科学, 2019, 40(14): 289-295. |
Yang JD, Liu TT, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis[J]. Food Sci, 2019, 40(14): 289-295. | |
[7] | 张姗姗. 银耳多糖的流变学特性及在蛋白饮料中的应用[D]. 长春:长春大学, 2018. |
Zhang SS. Rheological characteristics of polysaccharide of silvera and its application in protein beverage[D]. Changchun:Changchun University, 2018. | |
[8] |
Wu YJ, Wei ZX, Zhang FM, et al. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom:a review[J]. Int J Biol Macromol, 2019, 121: 1005-1010.
doi: 10.1016/j.ijbiomac.2018.10.117 URL |
[9] |
Bak JH, Yoo B. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum:Effect of NaCl, sucrose, and pH[J]. Int J Biol Macromol, 2018, 111: 77-81.
doi: S0141-8130(17)33317-2 pmid: 29289667 |
[10] | 咸娜. 黄原胶复配及流变学特性和应用研究[D]. 上海:华东理工大学, 2017. |
Xian N. The rheological characteristics and application of xanthan gum and its hydrocolloids mixtures[D]. Shanghai:East China University of Science and Technology, 2017. | |
[11] | 徐思思, 胡炎华, 黄金鑫. 黄原胶特性及其在食品和复配胶中的应用[J]. 发酵科技通讯, 2017, 46(1): 45-49. |
Xu SS, Hu YH, Huang JX. Characteristics of xanthan gum and its application in food and compound gums[J]. Bull Ferment Sci Technol, 2017, 46(1): 45-49. | |
[12] | 郭泽镔, 陈洁, 曾绍校, 等. 超高压处理对莲子淀粉糊流变特性的影响[J]. 中国粮油学报, 2014, 29(5): 29-35. |
Guo ZB, Chen J, Zeng SX, et al. Effect of μLtra high pressure processing on the rheological properties of Lotus-seed starch pastes[J]. J Chin Cereals Oils Assoc, 2014, 29(5): 29-35. | |
[13] | 刘婷婷, 杨嘉丹, 曹宸瑀, 等. 银耳多糖与结冷胶复配体系的流变及凝胶特性[J]. 食品科学, 2019, 40(17): 72-78. |
Liu TT, Yang JD, Cao CY, et al. Rheological and gelling properties of Tremella fuciformis polysaccharide and gellan gum mixtures[J]. Food Sci, 2019, 40(17): 72-78. | |
[14] | 陶瑞霄, 贾冬英. 常见理化因素对银耳粗多糖溶液黏度的影响[J]. 食品科技, 2017, 42(11): 217-221. |
Tao RX, Jia DY. Effects of some common physical and chemical factors on the viscosity of crude Tremella fuciformis polysaccharides solutions[J]. Food Sci Technol, 2017, 42(11): 217-221. | |
[15] |
Guo ZB, Zeng SX, Zhang Y, et al. The effects of μLtra-high pressure on the structural, rheological and retrogradation properties of Lotus seed starch[J]. Food Hydrocoll, 2015, 44: 285-291.
doi: 10.1016/j.foodhyd.2014.09.014 URL |
[16] | 高玥, 任小青, 黄宗海, 等. 食品感官实验室的设计及感官人员的筛选[J]. 农产品加工, 2019(5): 93-95. |
Gao Y, Ren XQ, Huang ZH, et al. Design of sensory evaluation laboratory and selection of sensory evaluators[J]. Farm Prod Process, 2019(5): 93-95. | |
[17] | 薛依婷, 白红霞, 李明杰, 等. 黑木耳多糖凝固型酸奶发酵工艺优化[J]. 食品工业科技, 2020, 41(16): 156-162. |
Xue YT, Bai HX, Li MJ, et al. Optimization of fermentation process of set yogurt with Auricularia auricular polysaccharide[J]. Sci Technol Food Ind, 2020, 41(16): 156-162. | |
[18] | 郭肖. 刺槐豆胶及其复配胶流变学性质的研究[D]. 兰州:西北师范大学, 2013. |
Guo X. Study on rheological properties of locust bean gum and its complex gums[D]. Lanzhou:Northwest Normal University, 2013. | |
[19] |
Bao HH, You SG, Cao LK, et al. Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae[J]. Food Hydrocoll, 2016, 57: 30-37.
doi: 10.1016/j.foodhyd.2015.12.031 URL |
[20] | Zhang J, Zhang YK, Liu Y, et al. Emulsifying properties of Tremella fuciformis:a novel promising food emulsifier[J]. Int J Food Eng, 2019, 15(3-4), 1-9. |
[21] |
Lecourtier J, Chauveteau G, Muller G. Salt-induced extension and dissociation of a native double-stranded xanthan[J]. Int J Biol Macromol, 1986, 8(5): 306-310.
doi: 10.1016/0141-8130(86)90045-0 URL |
[22] | 周盛华. 黄原胶在水溶液中的构象转变及其流变学研究[D]. 上海:上海交通大学, 2008. |
Zhou SH. Conformation transition of xanthan in aqueous solution and its rheological research[D]. Shanghai:Shanghai Jiaotong University, 2008. | |
[23] | 谢建雄, 刘珊, 顾振东. 影响瓜尔豆胶流变性质因素的探讨[J]. 广州食品工业科技, 2004, 20(4): 155-158. |
Xie JX, Liu S, Gu ZD. The Rheology Influencing factors of Guar gum[J]. Guangzhou Food Sci Technol, 2004, 20(4): 155-158. | |
[24] |
Wang Q, Ellis PR, Ross-Murphy SB. The stability of guar gum in an aqueous system under acidic conditions[J]. Food Hydrocoll, 2000, 14(2): 129-134.
doi: 10.1016/S0268-005X(99)00058-2 URL |
[25] | Zhang L, Ye X, Ding T, et al. μLtrasound effects on the degradation kinetics, structure and rheological properties of apple pectin[J]. μLtrason Sonochem, 2013, 20(1): 222-231. |
[26] |
Yan JK, Pei JJ, Ma HL, et al. Effects of μLtrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan[J]. Carbohydr Polym, 2015, 121: 64-70.
doi: 10.1016/j.carbpol.2014.11.066 URL |
[27] |
Wang ZM, Cheung YC, Leung PH, et al. μLtrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J]. Bioresour Technol, 2010, 101(14): 5517-5522.
doi: 10.1016/j.biortech.2010.01.134 URL |
[28] | 林鸳缘. 莲子淀粉糊特性的研究与应用[D]. 福州:福建农林大学, 2011. |
Lin YY. Research and application on the properties of Lotus seed starch pastes[D]. Fuzhou:Fujian Agriculture and Forestry University, 2011. | |
[29] |
Doyle JP, Giannouli P, Martin EJ, et al. Effect of sugars, galactose content and chainlength on freeze-thaw gelation of galactomannans[J]. Carbohydr Polym, 2006, 64(3): 391-401.
doi: 10.1016/j.carbpol.2005.12.019 URL |
[30] |
Sae-Kang V, Suphantharika M. Influence of pH and xanthan gum addition on freeze-thaw stability of tapioca starch pastes[J]. Carbohydr Polym, 2006, 65(3): 371-380.
doi: 10.1016/j.carbpol.2006.01.029 URL |
[31] |
Zimeri JE, Kokini JL. Rheological properties of inulin-waxy maize starch systems[J]. Carbohydr Polym, 2003, 52(1): 67-85.
doi: 10.1016/S0144-8617(02)00268-0 URL |
[32] |
Achayuthakan P, Suphantharika M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum[J]. Carbohydrate Polymers, 2008, 71(1): 9-17.
doi: 10.1016/j.carbpol.2007.05.006 URL |
[33] | 丁宝鼎. 真菌多糖酸奶的工艺优化及功能性的研究[D]. 泰安:山东农业大学, 2017. |
Ding BD. Process optimization and functional study of yoghurt with fungus polysaccharide[D]. Taian:Shandong Agricultural University, 2017. | |
[34] | 李广富, 陈伟, 李听听, 等. 两种真菌多糖益生菌酸奶协同抗皮肤衰老的研究[J]. 现代食品科技, 2016, 32(4): 23-28. |
Li GF, Chen W, Li TT, et al. Synergistic Anti-aging effect of two types of probiotic yogurts containing Agrocybe aegerita polysaccharides and hypsizigus marmoreus polysaccharides on skin[J]. Mod Food Sci Technol, 2016, 32(4): 23-28. |
[1] | 李彬, 陈向楠, 张建法, 王世明. 产胞外多糖菌株的筛选及胞外多糖结构分析[J]. 生物技术通报, 2016, 32(5): 165-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||