生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 205-211.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0203
收稿日期:
2021-02-22
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
许涛,男,研究方向:蔬菜分子生物学;E-mail: 基金资助:
XU Tao(), XIA Dong-jian, WAN Jing, JIANG Shu-han, SONG Jiang-hua()
Received:
2021-02-22
Published:
2021-12-26
Online:
2022-01-19
摘要:
F-box蛋白在植物中广泛存在,在植物生命活动中发挥重要作用。F-box蛋白通过与Skp1、Cullin和Rbx1形成Skp-Cullin-F-box(SCF)蛋白复合体,参与泛素-蛋白酶途径(ubiquitin-proteasome pathway,UPP)降解生物体中的蛋白质而发挥作用。F-box蛋白广泛参与植物对干旱、盐害、温度、重金属等非生物胁迫,以及病原菌和害虫造成的生物胁迫的响应过程。主要就F-box蛋白的结构、作用途径及其在植物抗逆响应研究领域的最新进展和存在的问题进行综述,旨在为深入研究F-box蛋白增强植物抗逆性的机制提供参考。
许涛, 夏冬健, 万菁, 姜书涵, 宋江华. F-box蛋白参与植物逆境胁迫研究进展[J]. 生物技术通报, 2021, 37(12): 205-211.
XU Tao, XIA Dong-jian, WAN Jing, JIANG Shu-han, SONG Jiang-hua. Research Progress of F-box Protein Involved in Plant Stress[J]. Biotechnology Bulletin, 2021, 37(12): 205-211.
F-box蛋白F-box protein | 响应逆境Responding to stress | 物种Species | 参考文献Reference |
---|---|---|---|
FOF2 | 干旱和盐胁迫Drought and salt stress | 拟南芥A. thaliana | [18,24] |
TaFBA1 | 干旱、盐和高温胁迫Drought,salt and high temperature stress | 小麦T. aestivum | [19,27,34] |
GmFBX176 | 干旱和盐胁迫Drought and salt stress | 大豆G. max | [20] |
AtDIF1 | 干旱、盐和脱落酸诱导 Drought,salt and ABA stress induction | 拟南芥A. thaliana | [21] |
OsO2g51350 | 干旱胁迫Drought stress | 水稻O. sativa | [22] |
CPR1与UBC13 | 低温胁迫Low temperature stress | 拟南芥A. thaliana | [33] |
Os06g06050 | 低温胁迫Low temperature stress | 水稻O. sativa | [36] |
CaF-box | 重金属胁迫Heavy metal stress | 辣椒Capsicum annuum | [39] |
RAE1 | 铝胁迫 Aluminium stress | 拟南芥A. thaliana | [42] |
BIG-24.1 | 灰霉菌诱导Induced by botrytis cinerea infection | 葡萄Vitis vinifera | [44] |
At2g02360 | 丁香假单胞菌诱导Induced by pseudomonas syringae infection | 拟南芥A. thaliana | [45] |
OsDRF1 | 番茄花叶病毒和丁香假单胞菌诱导 Induced by tomato mosaic virus and pseudomonas syringae infection | 水稻O. sativa | [46] |
MAX2 | 参与多种逆境和信号转导Participates in multiple stress and signal transduction | 拟南芥A. thaliana | [47-49] |
COI1 | 昆虫胁迫 Insect stress | 无柄植物 Sessile plants | [52] |
Os01g37260 | 褐飞虱(BPH)胁迫Brown planthopper stress | 水稻O. sativa | [53] |
FBS1 | 参与多种逆境和信号转导Participates in multiple stress and signal transduction | 拟南芥A. thaliana | [54] |
表1 参与植物逆境胁迫的F-box蛋白
Table 1 F-box proteins involved in plant stress
F-box蛋白F-box protein | 响应逆境Responding to stress | 物种Species | 参考文献Reference |
---|---|---|---|
FOF2 | 干旱和盐胁迫Drought and salt stress | 拟南芥A. thaliana | [18,24] |
TaFBA1 | 干旱、盐和高温胁迫Drought,salt and high temperature stress | 小麦T. aestivum | [19,27,34] |
GmFBX176 | 干旱和盐胁迫Drought and salt stress | 大豆G. max | [20] |
AtDIF1 | 干旱、盐和脱落酸诱导 Drought,salt and ABA stress induction | 拟南芥A. thaliana | [21] |
OsO2g51350 | 干旱胁迫Drought stress | 水稻O. sativa | [22] |
CPR1与UBC13 | 低温胁迫Low temperature stress | 拟南芥A. thaliana | [33] |
Os06g06050 | 低温胁迫Low temperature stress | 水稻O. sativa | [36] |
CaF-box | 重金属胁迫Heavy metal stress | 辣椒Capsicum annuum | [39] |
RAE1 | 铝胁迫 Aluminium stress | 拟南芥A. thaliana | [42] |
BIG-24.1 | 灰霉菌诱导Induced by botrytis cinerea infection | 葡萄Vitis vinifera | [44] |
At2g02360 | 丁香假单胞菌诱导Induced by pseudomonas syringae infection | 拟南芥A. thaliana | [45] |
OsDRF1 | 番茄花叶病毒和丁香假单胞菌诱导 Induced by tomato mosaic virus and pseudomonas syringae infection | 水稻O. sativa | [46] |
MAX2 | 参与多种逆境和信号转导Participates in multiple stress and signal transduction | 拟南芥A. thaliana | [47-49] |
COI1 | 昆虫胁迫 Insect stress | 无柄植物 Sessile plants | [52] |
Os01g37260 | 褐飞虱(BPH)胁迫Brown planthopper stress | 水稻O. sativa | [53] |
FBS1 | 参与多种逆境和信号转导Participates in multiple stress and signal transduction | 拟南芥A. thaliana | [54] |
[1] |
Nawaz G, Kang H. Chloroplast-or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses[J]. Front Plant Sci, 2017, 8:871.
doi: 10.3389/fpls.2017.00871 URL |
[2] |
许克恒, 张云彤, 张莹, 等. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1):26-32.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0636 |
Xu KH, Zhang YT, Zhang Y, et al. Research advances on the F-box gene family in plants[J]. Biotechnol Bull, 2018, 34(1):26-32. | |
[3] | Jia Q, Xiao ZX, Wong FL, et al. Genome-wide analyses of the soybean F-box gene family in response to salt stress[J]. Int J Mol Sci, 2017, 18(4):E818. |
[4] |
Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway[J]. Annu Rev Plant Biol, 2004, 55:555-590.
pmid: 15377232 |
[5] | Stone SL. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling[J]. Front Plant Sci, 2014, 5:135. |
[6] | Iantcheva A, Boycheva I, Vassileva V, et al. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana[J]. Res Rep Biol, 2015: 117. |
[7] |
Kuroda H, Takahashi N, Shimada H, et al. Classification and expression analysis of Arabidopsis F-box-containing protein genes[J]. Plant Cell Physiol, 2002, 43(10):1073-1085.
doi: 10.1093/pcp/pcf151 URL |
[8] |
Lechner E, Achard P, Vansiri A, et al. F-box proteins everywhere[J]. Curr Opin Plant Biol, 2006, 9(6):631-638.
pmid: 17005440 |
[9] |
Jin J, Cardozo T, Lovering RC, et al. Systematic analysis and nomenclature of mammalian F-box proteins[J]. Genes Dev, 2004, 18(21):2573-2580.
doi: 10.1101/gad.1255304 URL |
[10] |
Gagne JM, Downes BP, Shiu SH, et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis[J]. PNAS, 2002, 99(17):11519-11524.
doi: 10.1073/pnas.162339999 URL |
[11] |
Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg Chambers[J]. Cell, 1993, 72(5):681-693.
pmid: 8453663 |
[12] | 吴静, 彭小忠, 袁建刚, 等. F-box蛋白家族的功能研究进展[J]. 生物化学与生物物理进展, 2002, 29(4):503-505. |
Wu J, Peng XZ, Yuan JG, et al. Progress in functional characterization of F-box protein family[J]. Prog Biochem Biophys, 2002, 29(4):503-505. | |
[13] |
Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins[J]. Nat Rev Mol Cell Biol, 2013, 14(6):369-381.
doi: 10.1038/nrm3582 URL |
[14] |
Vierstra RD. The ubiquitin-26S proteasome system at the Nexus of plant biology[J]. Nat Rev Mol Cell Biol, 2009, 10(6):385-397.
doi: 10.1038/nrm2688 URL |
[15] |
Hermand D. F-box proteins:more than baits for the SCF?[J]. Cell Div, 2006, 1(1):1-6.
doi: 10.1186/1747-1028-1-1 URL |
[16] |
Kim DH, Zhang W, Koepp DM. The Hect domain E3 ligase Tom1 and the F-box protein Dia2 control Cdc6 degradation in G1 phase[J]. J Biol Chem, 2012, 287(53):44212-44220.
doi: 10.1074/jbc.M112.401778 URL |
[17] |
Qu L, Sun M, Li X, et al. The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance[J]. Plant Sci, 2020, 301:110643.
doi: 10.1016/j.plantsci.2020.110643 URL |
[18] | 屈丽娜. 拟南芥F-box基因FOF2参与干旱胁迫响应的机制研究[D]. 长沙:湖南大学, 2018. |
Qu LN. The research on the mechanism of drought tolerance regulated by the F-box gene FOF2 in Arabidospsis[D]. Changsha:Hunan University, 2018. | |
[19] | 安洁. 小麦F-box蛋白基因TaFBA1在ABA介导的植物干旱耐性中的功能[D]. 泰安:山东农业大学, 2019. |
An J. Functions of wheat F-box gene TaFBA1 in ABA-mediated plant drought tolerance[D]. Tai’an:Shandong Agricultural University, 2019. | |
[20] |
Yu YH, Wang P, Bai YC, et al. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress[J]. Environ Exp Bot, 2020, 176:104056.
doi: 10.1016/j.envexpbot.2020.104056 URL |
[21] |
Gao S, Song JB, Wang Y, et al. An F-box E3 ubiquitin ligase-coding gene AtDIF1 is involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J]. Environ Exp Bot, 2017, 138:21-35.
doi: 10.1016/j.envexpbot.2017.02.013 URL |
[22] |
Chunthong K, Pitnjam K, Chakhonkaen S, et al. Differential drought responses in F-box gene expression and grain yield between two rice groups with contrasting drought tolerance[J]. J Plant Growth Regul, 2017, 36(4):970-982.
doi: 10.1007/s00344-017-9701-y URL |
[23] |
Kim H, Yu SI, Jung SH, et al. The F-box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynjournal in response to changes in humidity in Arabidopsis[J]. Plant Cell, 2019, 31(9):2223-2240.
doi: 10.1105/tpc.19.00152 URL |
[24] | 杨传平, 王玉成, 刘桂丰, 等. NaHCO3胁迫下紫杆柽柳一些基因的表达[J]. 植物生理与分子生物学学报, 2004, 30(2):229-233. |
Yang CP, Wang YC, Liu GF, et al. Expression of some genes in Tamarix androssowii plant under NaHCO3 stress[J]. Acta Photophysiol Sin, 2004, 30(2):229-233. | |
[25] | 叶武威, 王俊娟, 宋丽艳, 等. 棉花耐盐基因表达谱与耐盐相关基因的克隆研究[C]. 延吉:中国棉花学会2010年年会论文集, 2010:174-175. |
Ye WW, Wang JJ, Song LY, et al. Study on gene expression profile of salt tolerance and cloning of salt tolerance related genes in cotton[C]. Yanji:Chinese cotton society 2010 conference proceedings, 2010:174-175. | |
[26] | Luo LM, Dang P, Guo BZ, et al. American Peanut Research and Education Society Proceedings:Application of EST technology in functional genomics of Arachis hypogaea L.[C]. American Peanut Research and Education Society Proceedings, 2004. |
[27] | 赵中先. 小麦F-box蛋白基因TaFBA1在植物耐盐性中的功能分析[D]. 泰安:山东农业大学, 2017. |
Zhao ZX. The functions of wheat F-box gene TaFBA1 in plant salt tolerance[D]. Tai’an:Shandong Agricultural University, 2017. | |
[28] |
Li YZ, Jia FJ, Yu YL, et al. The SCF E3 ligase AtPP2-B11 plays a negative role in response to drought stress in Arabidopsis[J]. Plant Mol Biol Report, 2014, 32(5):943-956.
doi: 10.1007/s11105-014-0705-5 URL |
[29] |
Jia F, Wang C, Huang J, et al. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis[J]. J Exp Bot, 2015, 66(15):4683-4697.
doi: 10.1093/jxb/erv245 URL |
[30] | 贾凤娟. 拟南芥F-box基因AtPP2-B11调节盐胁迫抗性的分子机理[D]. 泰安:山东农业大学, 2015. |
Jia FJ. Molecular dissection of Arabidopsis F-box-containing gene AtPP2-B11 in regulation of salt stress tolerance[D]. Tai’an:Shandong Agricultural University, 2015. | |
[31] | 刘选明, 孙孟思, 李新梅, 等. F-box基因FOF2在拟南芥盐和冷胁迫响应中的功能分析[J]. 湖南大学学报:自然科学版, 2018, 45(6):120-127. |
Liu XM, Sun MS, Li XM, et al. Function analysis on F-box gene FOF2 response to salt stress and cold stress in Arabidopsis[J]. J Hunan Univ:Nat Sci, 2018, 45(6):120-127. | |
[32] |
Liu L, Venkatesh J, Jo YD, et al. Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper(Capsicum chinense)[J]. Theor Appl Genet, 2016, 129(8):1541-1556.
doi: 10.1007/s00122-016-2723-1 pmid: 27147070 |
[33] |
Wang LP, Wen R, Wang JH, et al. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress[J]. New Phytol, 2019, 221(2):919-934.
doi: 10.1111/nph.2019.221.issue-2 URL |
[34] |
Li Q, Wang W, Wang W, et al. Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress[J]. Front Plant Sci, 2018, 9:521.
doi: 10.3389/fpls.2018.00521 URL |
[35] |
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57:19-53.
pmid: 16669754 |
[36] |
Tang W, Thompson WA. OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells[J]. Curr Genom, 2019, 20(2):100-114.
doi: 10.2174/1389202920666190129145439 URL |
[37] | Emamverdian A, Ding Y, Mokhberdoran F, et al. Heavy metal stress and some mechanisms of plant defense response[J]. ScientificWorldJournal, 2015, 2015:756120. |
[38] |
Zhou ZS, Song JB, Yang ZM. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium[J]. J Exp Bot, 2012, 63(12):4597-4613.
doi: 10.1093/jxb/ers136 URL |
[39] |
Chen R, Guo W, Yin Y, et al. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper(Capsicum annuum L.)[J]. Int J Mol Sci, 2014, 15(2):2413-2430.
doi: 10.3390/ijms15022413 URL |
[40] |
Fang Y, Deng X, Lu X, et al. Differential phosphoproteome study of the response to cadmium stress in rice[J]. Ecotoxicol Environ Saf, 2019, 180:780-788.
doi: 10.1016/j.ecoenv.2019.05.068 URL |
[41] |
Kobayashi Y, Kobayashi Y, Sugimoto M, et al. Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers[J]. Plant Physiol, 2013, 162(2):732-740.
doi: 10.1104/pp.113.218065 pmid: 23624855 |
[42] |
Zhang Y, Zhang J, Guo JL, et al. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis[J]. PNAS, 2019, 116(1):319-327.
doi: 10.1073/pnas.1814426116 pmid: 30559192 |
[43] | Menzel F, Feldmeyer B. How does climate change affect social insects?[J]. Curr Opin Insect Sci, 2021, 46:10-15. |
[44] |
Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, et al. Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine[J]. Mol Biol Rep, 2011, 38(5):3327-3337.
doi: 10.1007/s11033-010-0438-y URL |
[45] |
Stefanowicz K, Lannoo N, Zhao Y, et al. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection[J]. BMC Plant Biol, 2016, 16(1):213.
pmid: 27716048 |
[46] |
Cao Y, Yang Y, Zhang H, et al. Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression[J]. Physiol Plant, 2008, 134(3):440-452.
doi: 10.1111/ppl.2008.134.issue-3 URL |
[47] |
Ha CV, Leyva-González MA, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. PNAS, 2014, 111(2):851-856.
doi: 10.1073/pnas.1322135111 URL |
[48] |
Bu Q, Lv T, Shen H, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiol, 2014, 164(1):424-439.
doi: 10.1104/pp.113.226837 URL |
[49] | An JP, Li R, Qu FJ, et al. Apple F-box protein MdMAX2 regulates plant photomorphogenesis and stress response[J]. Front Plant Sci, 2016, 7:1685. |
[50] |
Piisilä M, Keceli MA, Brader G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biol, 2015, 15:53.
doi: 10.1186/s12870-015-0434-4 pmid: 25849639 |
[51] |
Wang J, Wu D, Wang Y, et al. Jasmonate action in plant defense against insects[J]. J Exp Bot, 2019, 70(13):3391-3400.
doi: 10.1093/jxb/erz174 URL |
[52] |
Melotto M, Underwood W, Koczan J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5):969-980.
pmid: 16959575 |
[53] |
Balachiranjeevi CH, Prahalada GD, Mahender A, et al. Identification of a novel locus, BPH38(t), conferring resistance to brown planthopper(Nilaparvata lugens StaL.)using early backcross population in rice(Oryza sativa L.)[J]. Euphytica, 2019, 215(11):185.
doi: 10.1007/s10681-019-2506-2 URL |
[54] |
Gonzalez LE, Keller K, Chan KX, et al. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression[J]. BMC Genomics, 2017, 18(1):533.
doi: 10.1186/s12864-017-3864-6 pmid: 28716048 |
[55] |
Stefanowicz K, Lannoo N, van Damme EJM. Plant F-box proteins—Judges between life and death[J]. Crit Rev Plant Sci, 2015, 34(6):523-552.
doi: 10.1080/07352689.2015.1024566 URL |
[1] | 杨树萍, 张琳, 徐继林. 藻类中添加剂的应用研究进展[J]. 生物技术通报, 2020, 36(2): 178-187. |
[2] | 陈水红, 曹莹, 陈泰祥, 李春杰. 内生真菌提高禾草抗盐碱性研究进展[J]. 生物技术通报, 2018, 34(4): 35-42. |
[3] | 许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1): 26-32. |
[4] | 周振宇, 胡金丽, 苏昕, 刘冬雪, 卜宁, 马莲菊. 一株野大豆内生真菌YD02菌株的鉴定及抗逆性研究[J]. 生物技术通报, 2017, 33(11): 106-111. |
[5] | 王艳霞, 王红玲, 王敏, 骆健美,. 简单节杆菌groEL基因表达对大肠杆菌抗逆性能的影响[J]. 生物技术通报, 2016, 32(5): 180-186. |
[6] | 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2): 7-13. |
[7] | 刘丽萍, 张东智, 张冲, 陈金焕. 黑果枸杞抗逆性及栽培育种研究进展[J]. 生物技术通报, 2016, 32(10): 118-127. |
[8] | 姜超强,祖朝龙. 褪黑素与植物抗逆性研究进展[J]. 生物技术通报, 2015, 31(4): 47-55. |
[9] | 王艳蓉, 张治国, 吴金霞. LEA蛋白及其在植物抗逆改良中的应用[J]. 生物技术通报, 2015, 31(3): 1-9. |
[10] | 于蕊,左芳雷,陈喜玲,魏艳杰,陈尚武. 重组粪肠球菌gshF基因对副干酪乳杆菌(Lactobacillus paracasei)L14抗逆性能的影响[J]. 生物技术通报, 2014, 0(9): 149-156. |
[11] | 王莎莎,盛业龙,马文广,郝大海,张建波,龚明. 抗氧化系统参与不同抗性烟草品种幼苗对干旱和低温综合抗性的形成[J]. 生物技术通报, 2014, 0(1): 132-142. |
[12] | 薛鑫,张芊,吴金霞,. 植物体内活性氧的研究及其在植物抗逆方面的应用[J]. 生物技术通报, 2013, 0(10): 6-11. |
[13] | 李静;崔继哲;弭晓菊;. 生长素与植物逆境胁迫关系的研究进展[J]. , 2012, 0(06): 13-17. |
[14] | 任菲;张荣佳;陈强;白艳波;黄菲;李雪梅;. ABA和SA对于提高植物抗旱及抗盐性的研究进展[J]. , 2012, 0(03): 17-21. |
[15] | 张春宝;赵丽梅;赵洪锟;董英山;. 植物蛋白激酶研究进展[J]. , 2011, 0(10): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||