生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 132-140.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0351
收稿日期:
2021-03-20
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
李楠海,男,硕士研究生,研究方向:植物生态学;E-mail: 基金资助:
LI Nan-hai(), SUN Zhuo(), YANG Li-min()
Received:
2021-03-20
Published:
2022-01-26
Online:
2022-02-22
摘要:
明确不同磷水平条件下接种丛枝菌根真菌(AMF)对桔梗质量与产量的影响。采用盆栽法,设计P0(20 mg/kg)、P1(50 mg/kg)、P2(80 mg/kg)、P3(140 mg/kg)共4个磷水平,同一磷水平分别接种摩西斗管囊霉(Funneliformis mosseae,FM)、根内根孢囊霉(Rhizophagus intraradices,RI)、象牙白多样孢囊霉(Diversispora eburnea,DE)和不接种处理。测定不同处理丛枝菌根真菌侵染率、桔梗的生物量、桔梗抗逆性指标、桔梗皂苷含量等指标。在80 mg/kg水平时,丛枝菌根真菌FM、RI及DE对桔梗的侵染率最高,分别为57.7%、38.3%、41.7%;3种AMF对桔梗产量及皂苷含量均具有显著影响,与未接种对照相比,桔梗根鲜重分别增加114%、62%、90%(P<0.05),桔梗皂苷D 含量分别提高20%、18%、16%;3种AMF可显著提高桔梗SOD、POD等保护酶活性,降低脯氨酸、丙二醛含量,提升了植物抗逆性。在80 mg/kg磷水平,接种丛枝菌根真菌FM、RI及DE的效果最佳,且接种FM的桔梗在产量和质量方面优于RI和DE。
李楠海, 孙卓, 杨利民. 磷水平与丛枝菌根真菌对桔梗生长及品质的影响[J]. 生物技术通报, 2022, 38(1): 132-140.
LI Nan-hai, SUN Zhuo, YANG Li-min. Effects of Phosphorus Level and Arbuscular Mycorrhizal Fungi on the Growth and Quality of Platycodon grandiflorum[J]. Biotechnology Bulletin, 2022, 38(1): 132-140.
图1 AM真菌和磷水平对桔梗侵染率、侵染强度的影响 不同字母表示同一磷水平处理在0.05水平上差异显著。下同
Fig.1 Effects of AMF and phosphorus level on the infec-tion rate and infection intensity of P. grandiflorum Different letters indicate significant difference at 0.05 level for the same phosphorus(P)level treatment. The same below
磷水平 Phosphorus level | 菌种处理 Inoculation treatment | 株高 Plant height/cm | 根长 Root length/cm | 根粗 Root diameter/cm | 根鲜重 Roots fresh weight/g | 根干重 Roots dry weight/g |
---|---|---|---|---|---|---|
P0 | CK | 32.500±3.010b | 20.240±1.498a | 1.377±0.112b | 6.899±0.671c | 1.349±0.074c |
DE | 33.900±3.247b | 21.250±1.799a | 1.550±0.105a | 10.867±0.799b | 1.915±0.174b | |
FM | 41.957±3.437a | 21.130±1.661a | 1.610±0.110a | 16.016±1.117a | 2.785±0.123a | |
RI | 36.813±3.644b | 20.850±1.334a | 1.540±0.107a | 15.165±1.320a | 2.809±0.241a | |
P1 | CK | 40.700±3.302a | 20.750±1.318a | 1.320±0.106b | 15.831±0.979b | 2.647±0.252c |
DE | 41.400±3.627a | 21.050±1.657a | 1.711±0.117a | 19.789±1.238a | 3.138±0.279b | |
FM | 42.375±3.021a | 21.722±2.152a | 1.670±0.134a | 21.356±1.876a | 3.648±0.345a | |
RI | 41.900±3.392a | 21.220±1.645a | 1.720±0.140a | 20.247±1.476a | 3.444±0.258ab | |
P2 | CK | 42.300±3.889a | 21.350±1.901a | 1.510±0.124b | 12.486±1.098c | 3.587±0.294b |
DE | 42.556±3.812a | 22.100±2.183a | 1.870±0.183a | 20.244±1.107b | 3.838±0.447b | |
FM | 43.900±3.518a | 23.450±1.863a | 1.910±0.151a | 26.722±1.953a | 5.147±0.389a | |
RI | 43.000±3.712a | 23.111±1.781a | 1.890±0.171a | 23.684±1.815ab | 4.688±0.372ab | |
P3 | CK | 35.200±2.781b | 22.100±1.983a | 1.455±0.123b | 10.975±0.820c | 2.119±0.197c |
DE | 38.722±2.360ab | 22.278±2.108a | 1.678±0.148a | 19.448±1.836a | 2.882±0.186b | |
FM | 42.400±4.169a | 22.500±1.958a | 1.750±0.100a | 15.506±1.530b | 4.491±0.407a | |
RI | 40.410±3.517a | 22.444±2.022a | 1.705±0.104a | 19.975±1.557a | 4.050±0.274a |
表1 AM真菌和施磷量对桔梗生物量的影响
Table 1 Effects of AMF and phosphorus application rate on P. grandiflorum biomass
磷水平 Phosphorus level | 菌种处理 Inoculation treatment | 株高 Plant height/cm | 根长 Root length/cm | 根粗 Root diameter/cm | 根鲜重 Roots fresh weight/g | 根干重 Roots dry weight/g |
---|---|---|---|---|---|---|
P0 | CK | 32.500±3.010b | 20.240±1.498a | 1.377±0.112b | 6.899±0.671c | 1.349±0.074c |
DE | 33.900±3.247b | 21.250±1.799a | 1.550±0.105a | 10.867±0.799b | 1.915±0.174b | |
FM | 41.957±3.437a | 21.130±1.661a | 1.610±0.110a | 16.016±1.117a | 2.785±0.123a | |
RI | 36.813±3.644b | 20.850±1.334a | 1.540±0.107a | 15.165±1.320a | 2.809±0.241a | |
P1 | CK | 40.700±3.302a | 20.750±1.318a | 1.320±0.106b | 15.831±0.979b | 2.647±0.252c |
DE | 41.400±3.627a | 21.050±1.657a | 1.711±0.117a | 19.789±1.238a | 3.138±0.279b | |
FM | 42.375±3.021a | 21.722±2.152a | 1.670±0.134a | 21.356±1.876a | 3.648±0.345a | |
RI | 41.900±3.392a | 21.220±1.645a | 1.720±0.140a | 20.247±1.476a | 3.444±0.258ab | |
P2 | CK | 42.300±3.889a | 21.350±1.901a | 1.510±0.124b | 12.486±1.098c | 3.587±0.294b |
DE | 42.556±3.812a | 22.100±2.183a | 1.870±0.183a | 20.244±1.107b | 3.838±0.447b | |
FM | 43.900±3.518a | 23.450±1.863a | 1.910±0.151a | 26.722±1.953a | 5.147±0.389a | |
RI | 43.000±3.712a | 23.111±1.781a | 1.890±0.171a | 23.684±1.815ab | 4.688±0.372ab | |
P3 | CK | 35.200±2.781b | 22.100±1.983a | 1.455±0.123b | 10.975±0.820c | 2.119±0.197c |
DE | 38.722±2.360ab | 22.278±2.108a | 1.678±0.148a | 19.448±1.836a | 2.882±0.186b | |
FM | 42.400±4.169a | 22.500±1.958a | 1.750±0.100a | 15.506±1.530b | 4.491±0.407a | |
RI | 40.410±3.517a | 22.444±2.022a | 1.705±0.104a | 19.975±1.557a | 4.050±0.274a |
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平×接种菌种 Phosphorus level× Inoculation | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
根鲜重Roots fresh weight | 74.582 | ** | 85.139 | ** | 9.164 | ** |
根干重Roots dry weight | 270.243 | ** | 198.309 | ** | 8.153 | ** |
根长 Root length | 5.936 | ** | 2.387 | NS | 1.161 | NS |
根粗 Root diameter | 22.927 | ** | 41.130 | ** | 1.681 | NS |
株高 Plant height | 23.355 | ** | 11.222 | ** | 2.718 | ** |
表2 磷水平和AM真菌对桔梗生长指标的双因素方差分析
Table 2 Two-way ANOVA of phosphorus level and AMF on the growth indexes of P. grandiflorum
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平×接种菌种 Phosphorus level× Inoculation | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
根鲜重Roots fresh weight | 74.582 | ** | 85.139 | ** | 9.164 | ** |
根干重Roots dry weight | 270.243 | ** | 198.309 | ** | 8.153 | ** |
根长 Root length | 5.936 | ** | 2.387 | NS | 1.161 | NS |
根粗 Root diameter | 22.927 | ** | 41.130 | ** | 1.681 | NS |
株高 Plant height | 23.355 | ** | 11.222 | ** | 2.718 | ** |
图4 不同处理桔梗叶中渗透调节物质及丙二醛含量变化
Fig. 4 Changes of osmotic adjustment substance and malondialdehyde content in P.grandiflorum leave under different treatments
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平×接种菌种 Phosphorus level× Inoculation | ||||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||||
SOD活性 | 35.847 | ** | 39.798 | ** | 4.307 | ** | |||
POD活性 | 401.728 | ** | 263.775 | ** | 6.909 | ** | |||
可溶性 糖含量 | 80.899 | ** | 245.099 | ** | 3.316 | ** | |||
可溶性蛋 白含量 | 31.054 | ** | 137.801 | ** | 10.538 | ** | |||
丙二醛 含量 | 127.606 | ** | 284.432 | ** | 19.269 | ** | |||
脯氨酸 含量 | 287.957 | ** | 434.905 | ** | 26.874 | ** |
表3 磷水平和AM真菌对桔梗抗性指标的双因素方差分析
Table 3 Two-way ANOVA of phosphorus level and AMF on resistance index of P.grandiflorum
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平×接种菌种 Phosphorus level× Inoculation | ||||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||||
SOD活性 | 35.847 | ** | 39.798 | ** | 4.307 | ** | |||
POD活性 | 401.728 | ** | 263.775 | ** | 6.909 | ** | |||
可溶性 糖含量 | 80.899 | ** | 245.099 | ** | 3.316 | ** | |||
可溶性蛋 白含量 | 31.054 | ** | 137.801 | ** | 10.538 | ** | |||
丙二醛 含量 | 127.606 | ** | 284.432 | ** | 19.269 | ** | |||
脯氨酸 含量 | 287.957 | ** | 434.905 | ** | 26.874 | ** |
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平× 接种菌种 Phosphorus level× Inoculation | ||||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||||
桔梗皂苷D3 | 290.902 | ** | 61.983 | ** | 29.743 | ** | |||
去芹糖桔梗皂苷D3 | 183.324 | ** | 81.995 | ** | 7.704 | ** | |||
去芹糖桔梗皂苷D | 132.696 | ** | 33.581 | ** | 14.303 | ** | |||
桔梗皂苷D | 5.037 | ** | 14.800 | ** | 1.306 | NS | |||
桔梗总皂苷 | 30.375 | ** | 60.855 | ** | 6.624 | ** |
表4 磷水平和AM真菌对桔梗皂苷的双因素方差分析
Table 4 Two-way ANOVA of phosphorus level and AMF on platycodin
指标 Index | 磷水平 Phosphorus level | 接种菌种 Inoculation | 磷水平× 接种菌种 Phosphorus level× Inoculation | ||||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||||
桔梗皂苷D3 | 290.902 | ** | 61.983 | ** | 29.743 | ** | |||
去芹糖桔梗皂苷D3 | 183.324 | ** | 81.995 | ** | 7.704 | ** | |||
去芹糖桔梗皂苷D | 132.696 | ** | 33.581 | ** | 14.303 | ** | |||
桔梗皂苷D | 5.037 | ** | 14.800 | ** | 1.306 | NS | |||
桔梗总皂苷 | 30.375 | ** | 60.855 | ** | 6.624 | ** |
[1] | 杨利民. 植物资源学[M]. 北京: 中国农业出版社, 2008:220-221. |
Yang LM. Plant Resources[M]. Beijing: Chinese Agriculture Press, 2008:220-221. | |
[2] | 国家药典委员会. 中华人民共和国药典-二部:2020年版分辑号:二部[M]. 北京: 中国医药科技出版社, 2020. |
Chinese Pharmacopoeia Commission. Chinese pharmacopoeiaⅡ[M]. Beijing: China Medical Science Press, 2020. | |
[3] | 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3):649-657. |
Zhang SB, Wang YS, Yin XF, et al. Development of arbuscular mycorrhizal(AM)fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels[J]. J Plant Nutr Fertil, 2017, 23(3):649-657. | |
[4] | 赵丽莉, 滕华容, 贺学礼. 施磷量和AM真菌对柴胡生长的交互效应[J]. 中草药, 2006, 37(9):1405-1409. |
Zhao LL, Teng HR, He XL. Effects of AM fungi on growth of Bupleurum chinense under different phosphorus levels[J]. Chin Tradit Herb Drugs, 2006, 37(9):1405-1409. | |
[5] | 仇惠君. AM真菌对黄花蒿有效成分积累的效应研究[D]. 南宁:广西大学, 2013. |
Qiu HJ. Effects of arbuscular mycorrhizal fungi on the accumulation of medicinal components in Artemisia annua[D]. Nanning:Guangxi University, 2013. | |
[6] |
Vierheilig H, Coughlan AP, Wyss U, et al. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi[J]. Appl Environ Microbiol, 1998, 64(12):5004-5007.
doi: 10.1128/AEM.64.12.5004-5007.1998 URL |
[7] | 岳虹, 陈芙蓉, 王梦丽, 等. HPLC-ELSD法同时测定桔梗中5种皂苷含量[J]. 中国测试, 2016, 42(1):49-52. |
Yue H, Chen FR, Wang ML, et al. Simultaneous determination of the content of 5 Platycosides in Platycodon Radix[J]. China Meas Test, 2016, 42(1):49-52. | |
[8] | 张坚, 李先宽, 李兴林, 等. 外源NO对桔梗幼苗生长和总皂苷积累的影响[J]. 中国现代中药, 2019, 21(10):1402-1406. |
Zhang J, Li XK, Li XL, et al. The effects of exogenous NO on the seedlings growth and accumulation of secondary metabolism of Platycodon grandiflorum[J]. Mod Chin Med, 2019, 21(10):1402-1406. | |
[9] | 王晓英, 王冬梅, 陈保冬, 等. 丛枝菌根真菌群落对白三叶草生长的影响[J]. 生态学报, 2010, 30(6):1456-1462. |
Wang XY, Wang DM, Chen BD, et al. Growth response of white clover to inoculation with different Arbuscular mycorrhizal fungi communities[J]. Acta Ecol Sin, 2010, 30(6):1456-1462. | |
[10] |
Graham JH, Leonard RT, Menge JA. Membrane-mediated decrease in root exudation responsible for phorphorus inhibition of vesicular-arbuscular mycorrhiza formation[J]. Plant Physiol, 1981, 68(3):548-552.
doi: 10.1104/pp.68.3.548 pmid: 16661955 |
[11] | 宋新颖, 邬爽, 张洪生, 等. 土壤水分胁迫对不同品种冬小麦生理特性的影响[J]. 华北农学报, 2014, 29(2):174-180. |
Song XY, Wu S, Zhang HS, et al. Effect of soil water stress on physiological characteristics in different winter wheat cultivars[J]. Acta Agric Boreali Sin, 2014, 29(2):174-180. | |
[12] | 杨国, 卢可, 朱高樑, 等. 丛枝菌根真菌摩西球囊霉对铜胁迫下白术幼苗光合特性及抗氧化酶活性的影响[J]. 植物生理学报, 2018, 54(4):618-626. |
Yang G, Lu K, Zhu GL, et al. Effect of arbuscular mycorrhizal fungus Glomus mosseae on photosynjournal and antioxidation enzyme activities in Actractylodes macrocephala seedlings under copper stress[J]. Plant Physiol J, 2018, 54(4):618-626. | |
[13] | 肖强, 郑海雷, 陈瑶, 等. 盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J]. 生态学杂志, 2005, 24(4):373-376. |
Xiao Q, Zheng HL, Chen Y, et al. Effects of salinity on the growth and proline, soluble sugar and protein contents of Spartina alterniflora[J]. Chin J Ecol, 2005, 24(4):373-376. | |
[14] | 滕华容. AM真菌与施磷量对柴胡生长和化学成分交互效应的研究[D]. 杨凌:西北农林科技大学, 2005. |
Teng HR. Effects of AM fungi on the growth and chemical composition of Bupleurum chinense DC. under different phosphor applied amount[D]. Yangling:Northwest A & F University, 2005. | |
[15] | 赵金莉, 贺学礼. AM真菌对白芷抗旱性和药用成分含量的影响[J]. 西北农业学报, 2011, 20(3):184-189. |
Zhao JL, He XL. Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica[J]. Acta Agric Boreali Occidentalis Sin, 2011, 20(3):184-189. | |
[16] | 齐国辉, 杨文利, 等. 丛枝菌根真菌对君迁子贮藏营养及抗冻性的影响[J]. 河北农业大学学报, 2005, 28(1):62-64. |
Qi GH, Yang WL, Zhang LP, et al. Effects of arbuscular mycorrhizal fungi on storage nutrient and cold resistance of Diospyros lotus L[J]. J Agric Univ Hebei, 2005, 28(1):62-64. | |
[17] | 宋成军, 曲来叶, 马克明, 等. AM真菌和磷对小马安羊蹄甲幼苗生长的影响[J]. 生态学报, 2013, 33(19):6121-6128. |
Song CJ, Qu LY, Ma KM, et al. Impacts of arbuscular mycorrhizal fungi and phosphorus on growth dynamics of Bauhinia faberi seedlings[J]. Acta Ecol Sin, 2013, 33(19):6121-6128. | |
[18] | 魏改堂, 汪洪钢. VA菌根真菌对药用植物曼陀罗(Datura stramonium L. )生长、营养吸收及有效成分的影响[J]. 中国农业科学, 1989, 22(5):56-61. |
Wei GT, Wang HG. Effects of va mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L[J]. Sci Agric Sin, 1989, 22(5):56-61. | |
[19] | 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药, 2005, 36(9):1415-1418 |
Su WH, Zhang GF, Li XH, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition[J]. Chin Tradit Herb Drugs, 2005, 36(9):1415-1418 | |
[20] | 郭兰萍, 汪洪钢, 黄璐琦, 等. 泡囊丛枝菌根(AM)对苍术生长发育及挥发油成分的影响[J]. 中国中药杂志, 2006, 31(18):1491-1496. |
Guo LP, Wang HG, Huang LQ, et al. Effects of Arbuscular Mycorrhizae on growth and essential oil of Atractylodes lancea[J]. China J Chin Mater Med, 2006, 31(18):1491-1496. | |
[21] | 王守生, 何首林, 王德军, 等. VAM真菌对茶树营养生长和茶叶品质的影响[J]. 土壤学报, 1997, 34(1):97-102. |
Wang SS, He SL, Wang DJ, et al. Effects of vam fungi on the vegetative growth and physiology of tea trees and the quality of tea[J]. Acta Pedol Sin, 1997, 34(1):97-102. |
[1] | 谢伟, 郝志鹏, 郭兰萍, 张莘, 张淑彬, 王幼珊, 陈保冬. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报, 2020, 36(9): 49-63. |
[2] | 陈奇;王阁奇;马莉;陈丽梅;. 洋桔梗的转基因研究[J]. , 2010, 0(03): 109-113. |
[3] | 张焕仕;贺学礼;. 干旱胁迫下AM真菌对油蒿叶片保护系统的影响[J]. , 2007, 0(03): 129-133. |
[4] | 孙国凤. 利用基因操作技术增产蔷薇插花,并开发出耐病性葡萄[J]. , 1995, 0(01): 14-15. |
[5] | 孙国凤;. 三种重组水稻的非封闭式温室实验[J]. , 1993, 0(12): 13-14. |
[6] | 孙国凤. 用基因操作开发矮性的重组花[J]. , 1992, 0(11): 12-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||